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Phylogenetic Structure of Shrub Community in Alxa Desert

and Its Environmental Determinants
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Abstract: To explore the construction mechanism of shrub communities in Alxa Desert, we quantified the
phylogenetic structure of each assemblage in Alxa Desert using net relatedness index (NRI) and analyzed
the variation pattern of NRI along longitude and latitude gradient and the relationship between NRI and
soil factors and hydrothermal factors. The results were as follows: (1) the shrub communities in the
southeast of Alxa plateau were mainly phylogenetically overdispersed, and in contrast, the shrub commu-
nities in the west and north of Alxa plateau were mainly phylogenetically clustered. (2) NRI of the shrub
communities in Alxa Desert decreased with increasing longitude and decreasing latitude. (3) In Alxa Des-
ert, the soil texture, soil bulk density, soil pH value and soil organic carbon content had no significant in-

fluence on the phylogenetic structure of the shrub communities. Annual precipitation and temperature an-
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nual range (The difference of the extreme maximum temperature and extreme minimum temperature) were
the most correlated factors with the phylogenetic structure of shrub communities in Alxa Desert among the
precipitation factors and temperature factors, respectively. Annual precipitation was negatively correlated
with NRI, and temperature annual range was positively correlated with NRI. The extreme maximum tem-
perature and extreme minimum temperature showed significant correlation with NRI. Based on these ana-
lyses, we speculated that temperature annual range influenced the phylogenetic structure of shrub commu-
nities through the extreme minimum temperature and extreme maximum temperature. Studies showed the
shrub communities in the southeast of Alxa plateau were mainly affected by interspecific competition and
the shrub communities in the west and north of Alxa plateau were mainly structured by environmental fil-
tration, and that the phylogenetic structure of shrub communities in Alxa Desert were mainly affected by
annual precipitation and the extreme temperatures.

Key words: Alxa Desert; phylogenetic structure of shrub community; latitudinal and longitudinal gradient;

hydrothermal factors; soil factors
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Table 1 Loadings of environment factors onto the first three axes in principle component analysis (PCA)
85 K+ Environmental factor 4i 5 Abbreviation PC1 PC2 PC3

AEHIR Annual mean temperature/ C Biol —0.134 65 1.096 288 —0.778 5
S H %22 Mean diurnal range/ C Bio2 —0.632 92 0.748 71 0.361 13
SR Tsothermality (Bio2/Bio7 X 100) Bio3 0.697 91 0.271 805 0.263 13
T AT A A AR 2% Temperature seasonality/ C Bio4 —1.306 34 0.341 941 0.039 61
B H i % = 18 Maximum temperature of warmest month/ C Bio5 —1.149 17 0.742 199 —0.2295
%% A K I Minimum temperature of coldest month/ C Bio6 1.151 74 —0.178 95 —0.615 93
AR A AL Y5 Bl Temperature annual range/ C (bio5-bio6) Bio7 —1.259 42 0.545 039 0.150 36
1B Z= ) Mean temperature of wettest quarter/ C Bio8 —1.174 0.544 729 —0.315 2
% T 2R Mean temperature of driest quarter/ C Bio9 0. 406 26 0. 379 545 —0.524 56
Hx % Z= 16 Mean temperature of warmest quarter/ C Biol0 —0.987 06 0.811 127 —0.461 06
% R Mean temperature of coldest quarter/ C Bioll 1.076 89 0. 425 984 —0.666 47
A% 7K Annual precipitation/mm Biol2 1.30905 0. 035 837 —0.232 38
%1% A %7K Precipitation of wettest month/mm Biol3 1.257 55 0.005 037 —0.383 96
% T H P& K Precipitation of driest month/mm Biol4 0. 840 47 0.564 986 0.682 62
[4 7K 2545 ¥ 28 ) Precipitation seasonality/ % Biol5 —0.642 36 —0.709 61 —0.743 94
%1% ZE %7K Precipitation of wettest quarter/mm Biol6 1.2815 —0.039 82 —0.308 61
% T Z %K Precipitation of driest quarter/mm Biol7 1.037 67 0.618 88 0. 600 39
B H %7K Precipitation of warmest month/mm Biol8 1.282 94 —0.040 48 —0.294 61
% H %7K Precipitation of coldest month/mm Biol9 1.037 67 0.618 88 0. 600 39
+3 pH { pH value of soil pH 1.195 71 0.461 869 0.068 66
+ ¢4 % Bulk density/(kg/m?) BD 0.237 0.065 486 —0.434 8
ki & & Sand content (0~2 ‘um)/% SAC 0.311 58 0.260 277 0.029
W9k 4 Silt content (2~50 pm) /% SIC —0.3639 —0.702 97 0. 105 04
Hiki & i Clay content (50~2000 pm) /% CLC —0.093 31 0.622 283 —0.2139
+ A PR & 1 Soil organic carbon content/(g/kg) SOC —0.608 77 —0.721 41 —0.042 07
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Table 2 Spearman correlation coefficients between environmental factors and NRI in Alxa
BH Ttem NRI Biol Biod Biod Bio6 Bio7 Biog Biol 1 Biol2 Biol3 Biol6 Biol7 Biol8 Biol9
Biol 0.191 1,000
Biod 0.266 0.328*%  1.000
Bio5 0. 280 * 0.568 ** 0.901 ** 1. 000
Bio6  —0.302%* —0.001 —0,832%% —0.695%% 1,000
Bio7 0.317%%  0.358%»  0.951%% 0.939%% —0.890%* 1,000
Bio8 0.292%%  0.523%%  0.919%*  0,936%% —0,670%* 0,889 % 1.000
Biol 1 0.171  0.425%* —0.646*% —0.391%* 0,812%* —0,612%% —0.425%* 1,000
Biolz ~ —0.224 0.030  —0.763%% —0,650*% 0.739%% —0,733%* —0,660** 0,731 1.000
Biol3s  —0.213 0.076  —0.733%* —0.608%* 0.761 —0.716%% —0.604%* 0,760 0.984 ** 1,000
Biol6  —0.209%  0.013 —0.757%* —0.650*% 0,743%% —0,734%* —0,642%% 0,721**  0,992%*  0.992%* 1,000
Biol7 —0.052  0.083 —0.431%% —0.351%% 0,276%* —0.336%% —0.427*% 0.380%% 0.658%* 0.582%% 0,591 %~ 1.000
Biol8 —0.204 * 0.005 —0.750%% —0,649*x 0,735%% —0,731 %% —0,629** 0,712%* 0.989 * 0.989 ** 0.998 ** 0. 587 *x 1. 000
Biol9 —0.052  0.083 —0.431%% —0.351%% 0,276%% —0.336%% —0.427%% 0.380%* 0.658%% 0.582%%  0.591%*  1,000%* 0,587 ** 1,000
pH 0.015 0.157 0.604 %% —0, 474 %% 0,523%% —0,526%% —0,530*% 0.625*% 0.763%* 0,732%% 0,740%*  0,670%*  0,738%* 0,670 %%
MEex %, P<< 0,01 BB FEMI; ». P << 0.05, BHFMK
Note: * * . P <2 0.01, the correlation was highly significant; % . P < 0. 05, the correlation was significant
4r 4r —
y=-0.104x-4.98 =-0.0065x+0.67
= ' R'=0.07, P<0.01 = R=0.067, P<0.01 =
— A —
2 s
25 2f £5 2r
® e
3z .8 3z R
7/ @ 7 «\
N § W& Q
RS of XS of
¥ 2
L — L —
* s # s
& o & 5
~ D ~ 0
Z 2r Z 2r
L . ) . . ,
40 45 50 55 0 80 160 240
-y - - [ =N
R T Rk
Temperature annual range/'C Annual precipitation/mm
PR ) =P AT s Al S : = : AL
Bl 3 3R 00 R AR B NRI BEAR IR AR LG [ (Bio7, A) F4EREKE (Biol2, B) f728 fhita 3

Fig. 3 Variation of net relatedness index NRI along temperature annual range (Bio7, A)

and annual precipitation (Biol2, B)
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