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Abstract; In this paper, we studied the plantlets of potato variety ‘Qingshu 9’ under simulated drought
stress to explore the molecular mechanism of potato stem under drought stress, respectively, and the
stems of plantlets were used for transcriptome sequencing. The results showed that: (1) the contents of
proline, soluble sugar and soluble protein were increased with the increasing concentration of PEG6000.
Under three different drought-stressed conditions, there were more down-regulated candidate genes than
up-regulated candidate genes with a total of 657 differential expression genes (DEGs) in potato stem. (2)
GO enrichment analysis showed that the DEGs in potato stems mainly focused on oxidation-reduction
process, response to hormone, oxidoreductase activity, glycosylhydrolase activity. KEGG pathway enrich-

ment analysis showed that the DEGs in potato stems mainly involved in plant hormone signal transduction,
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phenylpropanoid biosynthesis, zeatin biosynthesis, phenylalanine metabolism, starch and sucrose metabo-

lism, biosynthesis of secondary metabolites. (3) Real-time fluorescence quantitative PCR (qPCR) was

used to verify the expressions of six DEGs under different drought-stress conditions. The results were ba-

sically consistent with the transcriptome profile that proved the reliability of our RNA-seq data. Our re-

search provided the valuable information for understanding the drought resistance mechanism of potato,

and enriching the genetic resources of drought resistant potato breeding.
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®1 REWIEMEERE qRT-PCR 54
Table 1 gRT-PCR primers for the selected genes
(3 R 1D E 59 1 51 )
Code Gene 1D Forward primer (5'—>3") Reverse primer (5'—3")
Actin AGATGCTTACGCTGGATGGAATGC TTCCGGTGTGGTTGGATTCTGTTC
I G400002044 TCGGAGGACGGTGATGAAGTGAG CAGACGTTGCAGTATCCACGAGTG
I G400003123 ACGGTGAACACGGCATTGACAG TCTGCGACCTGCTGAGGAGTG
I G400027654 GTGTCCGCCGTGGAACAGATG GAGCGACAGCCACTCAATGCC
v G400011530 AACTGGTGCTGCTAAGGCTGTG TGAACGACAAGGTCCACAACTGAG
vV G400004652 CGTTCCTCATCGGTCAGTTCAGTC CTCCAGTGGCTGTCTCGTTATGC
VI G400007375 GCCAAGCCTGTCTCTTCTGGTAG ATCACCTCCAACTCACGGTTCTTG

A TR ID i K H A H4 PGSC0003DMG fiifb i G, F [

Note: Because the gene ID is too long, the repetitive part of PGSC0003DMG is simplified to G. The same as below

1.2.3 MFHEOLIE 407 0 R G 5
SO 2R 3 B i AL R 5 R T F 91 (raw reads)
ok 8 I 4 DU e P ) b B Sk AIRBT i AY readss . 74 3
R JE 09I B g (clean reads) , 3[R 26 ik K 3F
FEPRK B DL R 5 R P reads 1EAH G, A T R
[F] 5k BT A [e] 5 4 ] Ak 34 1) i PR 3R 38 K- oA W] L
PE R FPKM S Al 3 3 PR 3R Ik 7K F

1.2.4 GO BE&E N UK Pathway EE S LU
|log, (fold change) | >1,P<C0. 01 AR i1k 22 &
FEih # A (differential expression genes, DEGs) , i
it GO B HE 40 WF 58 22 7 BN AE GO il 4 1 1
Ol AR H I RE B2, @il Pathway B &M E
AT R SRR AR L, 10 3 1 s 4R W Pathway
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7 A (TaKaRa), LA 500 ng RNA g )2 % i cD-
NA. FIH 2¢Ot % il 5] & (TaKaRa) # 47 qRT-
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a7 . FIH Excel 2016 X F K 3 3k 7 % B 4 7k 17
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Table 2 Effects of drought stress on physiological indexes of potato

FE i 4 FR Sample name

il & iz Proline/ (png/g)

T] %5 M BE Soluble sugar/(pg/g)

] % M8 1 Soluble protein/ (pg/g)

CK 82.7342.17d 1.81+0. 11c 2.36+0.11d
Ps 98.3641. 34c 1.98=£0. 13¢ 3.2140. 08¢
P 142.86£3.27b 3.48+0.12b 3.8640.05b
Pis 197.79+4.12a 4.36£0. 16a 4.18+0.17a

AR/ NG FREFRRTE P<<0.05 K B2 5 B 3%

Note: Different normal letters in each column indicate significant difference (P<C0. 05)
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Fig. 2 The number of DEGs in potato stems

after drought stress
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Fig.3 DEGs in potato stems after drought stress
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Table 3 Quality assessment of reads

HE B 4 B LI 91 L I 0907 /% Qs % BJE G A1 C K
Sample name Raw reads Clean reads GC content/ %
CK-1 48 311 858 45 889 700 94. 47 87. 14 42.60
CK-2 46 772 722 44 463 068 94. 56 87.31 42.61
CK-3 52 579 328 50 015 728 94. 81 87.76 42.55
Ps-1 42 321 316 40 168 658 94. 87 87.95 42.59
Ps-2 51 196 894 47 972 622 93.90 86.07 42.68
Ps-3 49 552 008 47 139 566 94.72 87.65 42. 60
Pio-1 49 478 504 47 186 658 94.78 87.69 42. 65
Pio-2 48 028 274 45 758 312 94.98 88. 16 42.60
Pio-3 45 261 882 43 153 202 94. 67 87. 47 42.54
Pis-1 44 797 640 43 888 482 97.07 92.51 42. 34
Pis-2 42 371 552 41 593 184 97.00 92.41 42.31
Pi5-3 42 094 020 41 332 360 97.04 92.48 42. 46
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Table 4 Thet enriched gene ontology of DEGs

Ps; vs CK Py vs CK P15 vs CK

251 GO R
Type GO annotation sl T Y| T i T
Up Down Up Down Up Down
AR Rt 2 Oxidation-reduction process 142 121 112 123 109 197
H: K Z 9 3 Response to auxin 0 49 3 42 3 94
o 1y i X4k 2 41 5 89 1 B Response to chemical 16 86 38 76 43 146
Biological process Xf ¥4 2% A Wi )3 Response to hormone 14 63 14 51 14 111
F A HLY) I Y Response to organic substance 27 75 23 60 27 122
Xof N AR i 84 e )3 Response to endogenous stimulus 14 63 14 51 15 112
(?ellu%ff%i?n?onenl ML A1 X Extracellular region 21 37 27 40 25 53
AL IR JF ARG ¥ Oxidoreductase activity 141 128 114 134 114 203
T JK fift B 05 ME L VR B T B L 8E Hydrolase activity, acting on 28 29 30 33 23 m
Molecular function glycosyl bonds
IK i O-B B4k & 9 19 K fi# Bl 35 P Hydrolase activity, hy- 26 27 30 49 93 "

drolyzing O-glycosyl compounds

#& 5 DEGs E £ KEGG Pathways
Table 5 The enriched KEGG Pathways of DEGs

22 3 IR FE N Number of DGEs

KEGG fY i i % KEGG %%

KEGG pathway KEGG ID Pivs CK  Piyvs CK  Pis vs CK
W AEAR = 0 0 A ) & i Biosynthesis of secondary metabolites sot01110 139 132 154
Y E (5 5% S Plant hormone signal transduction s0t04075 61 56 98
KN R A Y 4 )l Phenylpropanoid biosynthesis 50t00940 46 48 58
YA A BEBEAC T Starch and sucrose metabolism sot00500 34 35 41
EARZEAEY S M Zeatin biosynthesis sot00908 14 10 13
KN & R Phenylalanine metabolism 50t00360 28 31 33
PN I R 2 19 5 BN T Protein processing in endoplasmic reticulum sot04141 37 — —
AN FRE B R B9 42 ¥ & i Biosynthesis of unsaturated fatty acids sot01040 11 — —
SR 1 Cyanoamino acid metabolism s0t00460 11 — —
TG A ¥4 i Diterpenoid biosynthesis s0t00904 12 9 —
£ 5 T RS 59 A= 904 8 Cutin, suberine and wax biosynthesis s0t00073 — 11 —
T8 A T A 26 R TR R ) A 5. %5 4k Pentose and glucuronate interconversions sot00040 — 21 —
2 B H KA Glutathione metabolism s0t00480 — 34 36
K N E YA M Carotenoid biosynthesis s0t00906 — — 11
13521 1 Al =% 4= ) & i Sesquiterpenoid and triterpenoid biosynthesis s0t00909 — — 10
ABC #%iz ABC transporters s0t02010 — — 8

VLl ERR R E

Note: —. The pathway was not significant
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K6 HEUHEFESHSBREDEGRER

Table 6 Information of DEGs involved in plant hormone signal transduction

FEK L Gene expression model

K I 1D
Name Gene 1D < < <
P; vs CK Py vs CK Pi5 vs CK
H:ﬁ%?ﬂ%\:ﬁél A G400001498 D D D
Auxin-responsive protein 400020139 D D D
G400019274 D D D
5| W -3~ 2, TR Ik e 5 i il . ;
GH3. 6 Indole-3-acetic acid-amido synthetase GH3. 6 (100021803 b b b
G400026186 D D D
G400001609 D D D
G400001611 D D D
HERKRIFEFH SAUR .
Auxin-induced SAUR 6400001647 b b D
G400001648 D D D
G400001649 D D D
G400011033 U U U
¥4 72 1 PYLA .

Abscisic acid receptor PYL4 (400015897 U U U
G400023949 U U D

%E@é@iﬁﬁ 2C ) (G400030332 D D

Protein phosphatase 2C G400016742 D D

H:U. B D T, TR

Note: U. Up regulation; D. Down regulation. The same as below

WSR2 W38 T AT 10 4% & 400 i, it
16 A% i i (% 5). R DEGs & £ KEGG
Pathway, & $LAH[F] ) Pathway 4 6 5%, H rh A4 AR
WA R Y EEG S SR ED
DEGs Jr (5 (% Fe 491 fe v HOUOCH R T R AR 90 65 B U8
13 FREREAC I L E R R AE WA L ORI 2 R .
T N 5T 28 B T4 4 4% Pathway 78 P, th B3
B AR AT A TR AR A A 4 4% Pathway
16 P b 1 2 5 4 A e B IR 45 4 5% Pathway
16 P i s 4 U005 % B 2K B R R AR B T
530 Y R — AN R B ARt R W K A S
I Z Rl 12 DL Z R AR = 0 1 A A . i i
& 4k Pathway [FRIRE VS AR Y2 A5 5 5% 5 W10
DL YE RN . 5 GO &gl A —2. I
AT XS AR YR AR DL S 4R A3 A DG 1Y
K4 DEGs #F173#F — 2 %58 73 .

2.6 ERRFBEELEESW

261 ERHEYHBEZERREEASH KEGG
Pathway &0 K. P MY RS Ri&
%4 614 DEGs, P, 56 4~,Py; 98 4>, F W
FAERKZ RIS RAE 55 SiEn., b ERKE
fFoSmit 2 M ERKRRNEE A AUX/TAA

FE 3 AN 5| WE-3- 2 TR Wk e 5 i GH3 BRI L5 A~
ARKRIFEFN SAUR W FEANFRRE T 26T
VIR 3k & A5 5 5 S 34 ABA
ZREH PYLA 78 P; (P p Bl RIR,2C BRI A %
M2 (PP2C) 5 PYLA By AR Ak i 3451 B AH 52 o 22 F A
Fik; i P IS AL 5 Py (P fEE—EM 22 5, Ui W]
NIRRT S han T SE R SR A B U — e 2
F(F6),

2.6.2 EZEEBERFERREERSHT T EMhia
T R 3 s R 0T B AR A R T W DA
EFMAERKER. U RBE D R 4
BB R T (3 A~ B 4 W I L3 A Bk LB
1A B RBETT G 2 A B-UE M B AL L AE T R ihan
T EIAERL R B RIR (R T, Al LA X
AR IR DG i I A1 i) b V8 3R 5k L 3 T ] i B 1
S, LAmm R S

2.6.3 EUEERFERREERSH TEW
BN Y 2 A B — R 5T PR B A S 5, DA
BRVEPE A AR R PTG L B s . B S T R B 2 A
AACEERE 2 DA H B3 A |k g 1 S8
AACY ARG IRE A L A2 T 5038 T 2 BUOR [F AR R
FIARBGR 8, RYITEIHAT AW H AL
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*®7 HEKE DEGsER

Table 7 Information of DEGs involved in carbohydrate metabolism

FEK L Gene expression model

K I 1D
Name Gene 1D o~ o~ o
P; vs CK Py vs CK Pis vs CK
G400024344 U U U
G400009411 U 18]
WA RS RSB Glucosyltransferase
G400005960 U U 18]
G400029490 U U U
G400025239 U U U
37 % ¥ 1T B Beta-glucosidase G400005021 U U U
G400002462 U U U
G400002590 D U U
B2 FL K5 i Beta-galactosidase G400030954 18) U U
G400000339 U U U
B-k M S ME T Beta-fructofuranosidase G401028252 U U U
G402020509 18] U U
B-VEH fiff Beta-amylase
G400001549 U D U
8 |HEFEFRL DEGsER

Table 8 Information of DEGs involved in redox system

FHF A Gene expression model

2R FH 1D
Name Gene ID P vs CK Py, vs CK Pys vs CK
G402003479 18] U 18]
AL R JE fifF Oxidoreductase
G400016293 U U D
G400011379 U U U
AW H Ik Glutaredoxin
G400011406 U U U
G400006386 U U 18]
o FH ALY Peroxidase G400022541 U U U
G400003748 U U U
ALY AL Superoxide dismutase G400000417 U U D

JE A X Y il A A8 5 0 O R T B 22 AR R R L DA
TP
2.7 ERFRIEEEM qRT-PCR IiE

I Ih A% 2K B e Sl P B AL IE B 6 4~ DEGs,
Horp T o5 bHLH145 % 56 7 76 KR [ & B 1+ 5
PR 1T IR IV 4 50 o SRl 1R I
fiff | <, BE TR S Ab TG AN H I -3 R B Al a, 7E Ps
P B RIR L FE PP Rl A VO 2K
T2 V] T 2 2 S il RN I 2 3% a/b 25 G R A N TR AR
JEF A R R BRI (- 4, A X B 6
A H #E 1T gRT-PCR B3 E , I3+ 58 FoAH X % 35 &
(El 5), AT A1 6 4~ DEGs # ik 19 484k 5 5 st 4l vh
FPKM {284k — 8. B3 1 % 3% 4 30 #9 ol 58 4

1B 3 38 8 A A% BOAS 5¢ 4 R () 58 T 78 o Az 00 12
RGEATAE—E 225+

3 1 B

ATTXE e 5 A I8 B i R FLR AT R A7 A
B0 P2 B DRARIT T 8 22 o T %) B 4% 35 25 B B T 7 4
Ao ZEBAE N Eh A R AR . R I A A R
(ot K AL G 4 X AN TR A 300 DL KA B 3R s BAT —
SE 15 o RN R AR DY L AR BF 5 e X R [
P A 30 B % 55 2K BEE AT e S AL e o X B SR
2R R E B 1 22 i HE X e DL ] A
30 T e S A B AR AL L TR D A 2R BN T R
IH B N AGE N ST R . GO Al Pathway & 0 Hr 3k
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Fig. 4 Gene expression profiles of RNA-Seq
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Fig. 5 Experimental verification of gene expression levels by qRT-PCR
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