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Mapping Quantitative Trait Loci Associated with Grain Length
and Genetic Analysis of Major Quantitative Loci in Rice
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Abstract: In this study, we constructed an F, isolated population derived from a cross between a dwarf wild
rice mutant with short-grain and a cultivar variety KJ0O1 with long-grain. And the genetic analysis for grain
length of the F, population was performed. By using 132 pairs of polymorphic molecular markers evenly
distributed on 12 chromosomes of rice, we conducted QTL mapping and major QTLs analysis, which
would establish a foundation of further cloning the novel major grain length gene and provide a theoretical
basis for grain shape breeding of rice. The results were as follows: (1) grain length trait of the isolated
population F, was quantitative trait controlled by multiple genes. (2) By QTL linkage analysis of 543 F,
individuals, a linkage map of 1 713. 94 c¢cM controlling rice grain length was constructed, and a total of 24
QTLs were detected, and only 3 QTLs showed additive genetic effects, the others showed negative genetic
effects. (3) The three major QTLs located in interval markers of PSM379 — RID24455, RID24455 —
RM15689, and RM571—RM16238 on chromosome 3, which explained phenotypic variation for 54. 85%,
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31.02%, and 7. 62%, respectively. (4) The grain length QTL located in interval markers of PSM379 —
RID24455 was the major QTL newly discovered in this study.
Key words: rice (Oryza sativa L.); grain length; QTL; genetic analysis

KFEEMA L FEMREEYZ — 2R Y
A—FWANB UMK ER, AR DR
K| E B R K TE G T S W s AR KR B = 2
K (1) it T 2 SRR OR 7 37 . A L S e K R ) B
7 T RL B 32 FIDRE R ORL T8 FURL R S R . H
w6 R T A BT R R R e KRR R Y B
HERZE, AN RV RIE 5K B A ER K
HH S BT 40K 1 R KOK A 4 . R AT B K
RE 36 F M REKR B R OB A L 58 B B/ LR T L
W, B FHAORE fh R AN RE RS K i B B IR
B B35 A K 1 A B

H AT, K FRE A58 2 R 25 4 K 8 & Fh K A
ST, A 2SI, Bl g & A2 5 KA kL
KAHEH QTL 24 102 4>, 12 FZ gk EXF 4
ML 2.3 M7 S Ek F QTL &2, Hh s
3 YR b LB QTL 7 giik 26 4.5 5 %5
Jetafk i QTL e AL 2 A0, B PRk
AR Ty 52 PRI B 52 ) o BiF 5 3 B T AN R B SR R L A
ME s QTLs HUfEERLE ", &4, mARE
L TARZ R QTL A g . B B 52 B K T 2 1) 34 11
B, B GS3H | ¢GL3YM!M | GS7TM . pGLI1-
APGM  TGW6" | GL7 [ GLW7 | GAD1M'™ |
GL4"® [ GL6" 2 F1 GSN1-

H 20 22 30 AFEAR . BUA 8 R R4 BE P i 43
FHLEEOE Y B R AR W 2218 . R B 35t 14 1L 3
52 7% ,Mckenize 2 HEs 5 R B 2 B 3 X B
S PR A B ST Wang S50V HFSE K
LR R R 2 0 DR ] 0 B MR . BT HGE P
E 5w B R S B, s R pLEE 2 e 4k, GL3. 17
i — 8 T8 A B R B PPKL &% W 2 & R/ 7
RIRWETREE AEg S XA 2 4 SNPs, 20 5l i K& &
MR 9 78 WU A TR« 2H 2 R 2 78 LI 2 IR - 3G i 4y 7e 9\
A, SRS R K, GS3U P g — 54 5
AHNE TR BRE A LA 4 MBS L RS A
SR A 14 SNP, 2Bt & MR (TGO R84 |k
B CTGA)  ff Jir 4 185 1 232 A~ % 35 B8 45 4 i
178 A~ § BUiZ & H B ) Be Bk kL B K KL,
GLWT-"* g A8 0 5 57 5% 5 OsSPLA3, il i {2
i S AL AN I 1 NI S B O o 1A | Rl 1 O
GL7"™ 4t — 4~ 5 I EE IF W I 9 LONGIFOLIA &

FILH T 17,1 kb (R B E &, 5 20k RSk 7 9 10) 21
AR A A O T B AR . GL6M P i — A B
AT FF8) e & 698 1 (PLATZ) 38 i 45 61 40 i
S3BAREIMAFRLAC BE . T AR ok B 7 B 1 K A R R
PRIAR 2 (G 3 6 56 PR 3E 47 o e R 2 68 43 A 1) 250 AH

. A 11 ik Sk K JE R, A7 R 0T R 5O )RR
AL EA T RN AN 2. IR SR
P — LB ) QTL A 83, 5 BT R JE I, AN =
& F 5 R MR 1 38 A% R 45 BL B 5 TR s X 22 A L
KR I RE F R 3 SRR ™,

AR S 6 25 1) FH i M A R 9 AR A 5 R R R R
Fei b A KJOT 4238 o b b7 i AR F, , P b 1
RFAFT AL TS QTL B HT . I X 244 QTLs
PEAT AL . R 3 3 A F 8k QTLs, 4w Hp—
ANEB & B 5 R B QTL A a5, X 2 A 5 ik
{E ik 54. 85 %, f F 3 5 Y ki 4 Thrid PSM379
~RID24455 bric Z [a] . AW B 7E Rix E 800 K
FE DR RS AN 6 T 28 3 T 4 L T B N Oy T bR G
B E AT T Sl

L MRS ik

L1 KEER

SR 3 B A R R AT S AR OB B A &R
KJO1, B2 Fh F, 58074 BREAAR . 2013 4R LR g
TR RN R ARG AT G WLEE 5 40 #T
.2 77 &
1.2.1 MREE KBEEAE, RIS R E
Bl RGBT ARG 2 . R ARBORE , Bl Bk 2B
10 KEAEAY 8 RRARFEHE R —HE B RGN H 10 RAs &
PRI IdsR . ER 3 KRR R 1P ME
1.2.2 DNAKWRERERESFHRiEaHMm KBEL
DNA ({42 B S B 22 5600 p bR ik . 49 3 A% IR
5 b REE S o B UK f B DNALAE R PCR 47
BB ., B4 PCR RN K (20 pl) @R 1 X
PCR Buffer,0. 2 mmol/L dNTPs,1 U Taq ff,250
nmol/L &F 51 #.1 L #H DNA, PCR B &
My Cycler (BioRad) #1F ¥4 L #E 17, & W27
294 CHASYE 3 min; §7 1 35 AN IR, 194N 26
94 C 405,55 C 405,72 C 40 s; )5 72 C 2 min,



600 wode Mo % 40 &

A McCouch 207 FF & B9 7K B8 SSR #RiC . BF B 4%
TR FE & 19 PSM ARic . DL B AR Hi NCBI ¢
Y& % (Http:/ /www. ncbi. nlm. nib. gov/) & it i}
9311 5 H A 0 J¥ 51 % 3T 9 In/Del #5ic™, % B
395 XL A% 5 M 1 XF L P 0 A TOKREIY 12 Fk
AR bR R A HR IS ARG . 4 Fhrid
TEFEUR T B 55 R R S8 ok 600 SR TN M TR i 95 A HR Dk
GRS ARYLAG I 4y BT L BRIk S R 2L DY [ A
W78

1.2.3 QTL E#AoMREBEFESRITHHM  FH o
Mapping V3.0 #/F#47 QTL 434, LL Group
fir % o3 24 . Kosambi J5 ik it F it L i 5. L LOD
{8 2.5 fEH QTL fF7E M AR, 24 S bR ok A3 19 LOD
{HRF LOD BA{E B, I 3% X5 43 F b id 22 18] £F 7
— QTL {7 HEAF X ] 2 LOD W R ] T — 4
LOD B i DXCTR] 5] B 3 550 1 #0180 . 4K
it RH DGk 43 A1 K b 250 9% ) 1T SPSS 3 A 58 1

2 RS0

2.1 EXRERF, BEHRKERSEEST

AR S G 2 T AR AT 1) 2 I A A Ak S AR R T 1y
B h 6.8 mm (& 1,A), %4 JLAE Rl . B Fa E
WAL BEAR N TO A B . o AR OB 2E AR KJO01 (& 1,
AVEYRAK R 12,9 mm) VE R REAR P47 2458, 4
QTL #H 15> B R Fo o X EA K 543 #% F,
PR UEA TR AR R A R A A SRR R ACRL K
2SR, B ER K 9. 46 mm, FEK
FHRHRRLRK A TRCEZ L, ZRBREAKGE D,
Wb ZOR A PR Sy 22 36 DR 4 o A 28 kIR

WK EF, BER L R#ESSA(E 1,B), U
10. 75 mm 5 AFALE 2 N0, BRI AR 5 KOk P AR
M R 9. 84 = 1, RF I G AE N 70. 88 (i 011 =
6. 63) T I fd 25— XJ FE PR I A R AL 3 B 1L 3+ 1
Ul BIAE 1% 40 55 BE AR T A TE 22 0 45 R K 1 32 A%
F
2.2 EAESFIESMEEHNEERIENHE

Ry TR R % A IR S AT AR R AR
HRRERN ZEMER ST %, A58 5~10
M BE B — XF AR I FE KRS 12 4% 4 (0 {1 3k ik B
395 % SSR.PSM K InDel #5ic, Z&MIEH 5
MARIC T Fo BEOAR A S R ALR I (| 2) . B K
D T F, BRI R R 37 1 2 8 4R 10 2 233 X,
LT N 58.99%,

I 233 Xt Z A FRi0 X 543 # F, MR SEAT 5

DU I L A5 B BEAA AT op A SE bR L ARl £ L A7 2
PRICY" HEAF BUBOR A7 L bR 078 T AR b B 20 25 LL o
WAwES 1 s 2+ 1B BRX AT SRR IC e - B 2 132
XA RChRAC T 3 B A P R AR
A58 BT R A Y R T B T K R Y 12 ARk
B SR B 1 713, 94 M. A AR A5 C A B %
12.98 M. PH Rk Ge iR 4 ~15 A 4Rid. H 10
SR AR D A 43 51 SRAakEE,

Tk
Short grain

K

Long grain

gj S
Frequency

$ik Grain length/mm

AL RAHRPRLA B LB AR R =2 mm; B, Fo B4
PR BE 43 A AR
P 1 SRAKFARL BERT F, B ORI PR 9 451 238 53 47
A. The grain length of the parents, Bar=2 mm; B. Frequency
distribution for grain length in F; individuals
Fig. 1 The grain length of the parents and frequency

distribution for grain length in F, individuals
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1. Dwarf wild rice mutant; 2. Cultivar variety KJ01; From left
to right, the markers are RM13019, RM16460, RM16467,
RM16605, RM16717, RM17305 and RM17971, respectively

Fig. 2  Electrophoretic analysis for part polymorphic markers
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Table 1 Phenotypic value of grain length trait of parents

and its F, population

. i K
P Material Grain length/mm
KJO1(Py) 12.9
P%ZIK . WA F (Py) Wild rice 6.8
arents
P, —P," 6.1""
F-#J{H Means 9.46
75 SR i Range of variance 7.17~12.50
F, w% triEZE SD 0.99
F: population M )& Skewness 0. 37
I BF Kurtosis —0.24
SR CV 0.10

W DROR2ME; » » fRF 0,01 kP25 0#

Note: 1)Difference between two parents; * * denote significant

difference at the 0. 01 level
LOD score
0 20 40 60 80 100
0 RM3265 —t ¢
18. 32 L] RM14394
19. 04 7‘§ RM4683
20. 76 / \ RM14417
25.34 | | RM14442
63. 07 7‘% RM3461
72. 6 B RM14759
87.93 | RM14862
110. 61 o PSM377
116. 71 /_\ PSM379
132.96 /=\ RID24455
148. 38 RM15689
150 RM15701
192.98 — [ —— RMS571
211.28 RM16238

K13 Chr3 iy QTL & 8 5t % K
Fig. 3 The linkage genetic map of grain length

QTLs on Chromosome 3
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Table 2 QTLs analysis for grain length in rice

P GREN A K FRiE AiAbRid LOD {i e RIAR S i 2k MO
Chromosome Position/cM Left marker Right marker LOD score PVE/% Additive Dominant
1 34.00 RID4530 RM259 5.28 1.42 —0.16 —0.06
2 44. 00 RM12632 RID14197 3.51 0.16 0.03 0. 06
2 175. 00 RM13893 RM112 4.03 0. 86 0.09 0.12
2 190. 00 RM112 RM5807 4.79 0.77 0. 10 0.09
3 43. 00 RM14442 RM3461 4. 41 0.42 —0.05 —0.13
3 128. 00 PSM379 RID24455 108. 71 54. 85 —1.06 —0.20
3 135. 00 RID24455 RM15689 77.09 31.02 —0. 80 0.01
3 174. 00 RM15701 RM571 5.08 1.25 —0.11 —0.16
3 204. 00 RM571 RM16238 21.43 7.67 —0.39 —0.06
4 42.00 RM16717 RM16952 3.60 0.18 —0.06 0.01
4 117. 00 RM451 RM348 7.78 2.13 —0.20 —0.04
6 82. 00 RM541 PSM138 5.53 1.51 —0.15 —0.10
7 31.00 RM180 RID8863 3.93 1.03 —0.14 0.01
7 80. 00 RM505 RMA47 9.97 2.92 —0.24 0.03
7 95. 00 RM47 RM1357 10. 53 3.30 —0.25 0.09
8 28. 00 RM22334 RM547 3. 56 0.19 —0.05 0. 04
8 125. 00 RMS80 RM477 6.03 1. 44 —0.17 0. 00
10 13.00 RM24872 RID7072 4. 27 0.90 —0.08 0.13
10 38. 00 RID7072 RM304 5.55 1. 85 —0.11 0.21
10 89. 00 RM304 RM496 7.23 2.01 —0.20 —0.07
11 17.00 PSM183 PSM410 4. 37 0.63 —0.11 —0.01
11 78. 00 RID15261 PSM366 3.90 0. 27 —0.01 —0.10
12 49. 00 RID14904 PSM421 6.18 1.71 —0.17 0.06
12 68. 00 PSM421 PSM463 3.96 0.25 —0.03 0.09
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