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Response and Adaptation of Twig-leaf Functional Traits

of Populus euphratica to Groundwater Gradients

WEI Yuanhui, WANG Zhixin, LIANG Wenzhao, MA Fulong, HAN Lu”
(College of Plant Science, Tarim University, Alar, Xinjiang 843300, China)

Abstract: We studied leaf and twig functional traits, namely, leaf thickness(LLTS), leaf area(ILA), specific
leaf area(SLA), leaf dry weight of every leaf (LM), leaf dry matter content(LDMC), leaf tissue density
(LTD) and twig length (TSL), twig diameter (TSD), leaf area ratio (LAR), leaf/stem mass ratio
(LSMR), Twig stem wood density (TSWD) and Huber value(HV) of Populus euphratica Oliv. in Tarim
extremely arid area. We analyzed the variation characteristics of these functional traits along the groundw-
ater depth gradient (GWD), and the trade-off between leaf-twig traits and functional traits combination by
One-way ANOVA, Pearson correlation and principal component analysis(PCA), in order to reveal the eco-
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logical strategy of P. euphratica to adapt the extremely arid desert environment. The results showed that:
(1) the variation coefficient was from 8. 61% to 59.31%, the HV was the largest (59.31%), LDMC and
LAR were the smallest (8.61%, 9.75%) and the most conservative traits. (2) Variance analysis showed
that thirteen traits of P. euphratica had significant difference between GWD 1.5 m and 4. 8 m, and there
were significant difference of LTS, LTD, TSL and HV between GWD<C(2. 4 m and GWD>=3.5 m. (3)
Correlation and principal component analysis (PCA) showed that LA, SLA, LDMC, LTS, LTD, LAR,
TSWD and HV could be used as important indicators to reflect the characteristics of P. euphratica twig-
leaf traits. There were significant correlation between 28 pairs of leaf-twig traits(P<C0. 05), especially HV
was significantly negative correlation with TSL and positive correlation with TSD(P<C0. 05), and TSL was
negative correlation with TSD, as well. HV was significantly negative correlation with LAR, LSMR, LA,
LM(P<C0.05). Also, leaf display efficiency(LLAR and LSMR) were significantly negative correlation with
LDMC(P<C0. 05), and TSWD was negative correlation with LA and SLA. It indicated that there was a
potential trade-off mechanism between machine-water safety and carbon availability of P. euphratica in ar-
id areas. P. euphratica adopted the ecological strategy, such as reducing LA, SLA and leaf display effi-
ciency (LAR and LSMR), increasing LTS, LDMC, TSWD and HV, which were beneficial to reduce wa-
ter loss, storing resources (nutrients and water) and enhancing resilience, to adapt the arid-barren desert
environment. Plant economic spectrum also existed in desert ecosystems. With global warming and region-
al water shortage, it generally shifted towards the conservative strategy of slow investment-return.
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Table 1 The characteristics of sampled P. euphratica and environments at different habitats

W R BRE ok Soil mutrient 0220 o>/ + kg
B i 12 I 5 W /m Branch it T KAz BBk Soil nutrient (C ) ecm) /(g * kg
plot ~ DBH  Height Crown height GWD SWC/ % = \

/cm /m /m /m A LR o 4 it

! SOM STN STP STK

U, 20. 28 8. 36 4.02X3.76 2.27 1.5 29.18 14. 81 0. 64 0.92 5.12
U, 22.89 7.42 4.47X4.12 2.41 2.4 11. 38 18.58 0. 87 1. 16 7.21
U, 24.41 6.73 3.78X3.42 2.69 3.5 2.92 11. 26 0.46 0.67 6.53
U, 26.27 6. 54 3.22X3.49 3.17 4.8 1.51 8.12 0.25 0.59 6. 26
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Table 2 Variations in twig and leaf traits of P. euphratica

PEAR R MH fe/MAE f{E R KIEN bR 22 A5 5 R

Trait Max. Min. Med. Mean SD CcvV/%
it JEEF Leaf thickness (LTS)/mm 0. 458 0.117 0.297 0.283 0. 092 32. 46
i fi FH Leaf area (LA)/cm? 12.707 5. 442 9. 054 9.073 2.088 23.01
Lt i 1 FH Specific leaf area (SLA)/(cm?/g) 115. 44 66. 393 90. 026 89. 951 10. 862 12.08
¥+ 8 Dry weight of every leaf (LM)/g 0.126 0.054 0.092 0. 090 0.023 25. 20
T4 it & 4 Leaf dry mass content (LDMC)/(g/g) 0.371 0.262 0.322 0.321 0.028 8.61
-2 21 % & Leaf tissue density (LTD)/(g/cm?) 0. 850 0.217 0.333 0.398 0.159 39.93
I FR 3R Leaf area ratio (LAR)/(cm?/g) 94.393 65. 808 80. 348 79. 847 7.781 9.75
25 i i e Leaf/stem mass ratio (LSMR) /(g/g) 25. 480 4.633 13.953 13.961 5.033 36.05
ISR B Leaf intensity (LD /(No. /g) 17. 453 7.186 10. 220 10. 876 2. 714 24. 96
/MK BE Twig length (TSL) /cm 30. 30 8.233 15. 025 16.076 6.079 37.82
INELH A% Twig diameter (TSD)/em 0.203 0.110 0.157 0.155 0.025 16. 14
gﬁ%éﬁg Twig stem wood density (TSWD)/(g/ 0.721 0. 265 0. 555 0. 540 0.117 21. 68
B /RME Huber value (HV) /(m?/m?) 0. 000 63 0. 000 08 0. 000 19 0. 000 24 0.000 14 59. 31
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The four different groundwater depths represent the four plots with different habitats (Table 1) ; Different capital and normal letters

denote the extremely significant (P<Z0. 01) and significant difference (P<C0.05), respectively.

Fig. 1

The same as below

The response of leaf functional traits of P. euphratica to groundwater gradient
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Fig. 2 The response of twig functional traits of P. euphratica to groundwater gradient
x 3 WHEM-NE TR B AR K
Table 3 Pearson correlation between twig and leaf functional traits of P. euphratica in desert riparian forest
LTS LA SLA LM LDMC LTD LAR LSMR LI TSL TSD TSWD
LA —0.475 1
SLA  —0.371" —0.044 1
LM —0.082 0.335 —0.276 1
LDMC —0.011 0.037 —0.081 —0.345" 1
LTD  0.563" —0.383°  —0.193  —0.351 0.042 1
LAR —0.386" 0.134 0. 282 0.010  —0.393" 0.088 1
LSMR —0.236 0. 080 0.193 0.215 —0.498" " —0.113 0.291 1
LI 0.110 —0. 384 0.217 —0.961 0.280 0.388 —0.013 —0.197 1
TSL  —0.759" 0. 544" 0. 300 0.050 0.048  —0.465°°  0.429°" 0.222  —0.123 1
TSD  0.108 0.010 0.093  —0.659" 0.335" 0.300  —0.020 —0.267 0.601°" —0.032 1
TSWD  0.129 —0.209  —0.282 0.002 0.070 0.188  —0.099 —0.095  —0.026  —0.302  —0.035 1
HV 0.446"° " —0.361 —0.067 —0.479" " 0.215 0.296 —0.336" —0.392 0.526 —0.522"° 0.604" " 0.174
HN=40, * » P<0.01,% P<0.05, F[
Note: % % represents P<C0.01, * represents P<C0.05. The same as below
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Table 4 Principal components analysis (PCA) table of functional traits of P. euphratica

WK 5 F 2 F Factor loading of leaf trait Cog\ilﬁﬁion

LTS LA SLA LM LDMC LTD LAR LSMR LI TSL TSD TSWD HV (ré{{c)

PCA1 —0.870 0.554 0.516 —0.030 0.042  —0.511 0.496 0.256 —0.060 0.923 0.036  —0.305 —0.503 50.77%

PCA2 0.108 —0.287 0. 285 —0.931 0.512 0.370 —0.072 —0.396 0.897 —0.078 0. 807 0.004 0.637 25.92%
T IBIETSD YOI — F 915E I B E B T RE MR 40 Bl
~ wow 13 ASREIE FEAR AT 28 REFEIR B 136 (P<20. 05) 4
3 s e Forb 5 HY 3 HEHH § 4.5 LTS LALLM &
% s ° | SLA A 6 4.5 LTD. LI TSL & %M LM &4
S R T_%WP__L____L_KR_L;______O___ 54\,5LDI\/IC\LAR\TSDE%*ﬁ%ﬁ@ﬁiﬁ\o i
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']H? Cosl P YER LR DR MR R Z IR X 57, L, 454
® ! 1E PCAT,PCA2 fih I DA iy B e 1) D RE R AR O
LM ## LA, SLA,LAR,LDMC, LTS, LTD, TSWD,
B HV { Jy #81 4 6F 55 5 47 1 10 57 09 T 5 4 i

S5—EM4 PCA1(50.77%)
I3 WA R SRR AR 59 32 L 43 A
Fig. 3 Principal components analysis (PCA) of

functional traits of P. euphratica
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