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Responses of Double-trihelix Genes to Phytohormones

and Abiotic Stress in Tomato

CUI Baolu', LI Fenfen®’, CHEN Guoping®
(1 The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000,

China; 2 College of Bioengineering, Chongqing University, Chongqing 400044, China)

Abstract: Double-trihelix genes play important roles in promoting morphogenesis and resistance to stress.
In order to identify their function in tomato, we tested the expression patterns and responses of five doub-
le-trihelix genes in different tissues, to phytohormones and abiotic stress by bioinformatics and expression
analysis. Experimental results showed that: (1) five members and their species specificity were determined
in tomato by bioinformatics analysis. (2) Expression pattern analysis showed that SIGTL3 specifically ex-
pressed in root and stem and others high in fruits by means of qRT-PCR, suggesting the tissues specificity
of double-trihelix genes in AC™". (3) Hormone-induced test displayed that SIGTL5 responds to four kind
of phyhormones very quickly and SIGTLI is only induced by ABA. (4) It was proved that expression lev-
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els of SIGTL3 and SIGTL5 can be altered by salt, SIGTL3—SIGTL5 by extreme temperature, SIGTL3
and SIGTL5 by mechanical wounding, and SIGTL1, SIGTL4, SIGTL5 by dehydration. The results indi-
cated that SIGTL3 function is correlated with plant morphogenesis and abiotic stress, while others to fruits
development. Our study also suggested that SIGTL1 is related with ABA signaling and SIGTL5 with sig-

naling transmission as the result of its fast responses to various exogenous hormones.

Key words: Solanum [ycopersicum; double-trihelix genes; expression patterns; phytohormonal treat-

ments; abiotic stress;
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TR 43 PR ] g i . = R JiE (double-trihelix) &5 #4343 ,
5 = MR AS A BT W] R0 2 S GT Joff, 2 4> =
WRWE L M B 2 (8] i LR P 98 2 5 T HAh & A i
ZRAY . B ZIBEE Y Trihelix % 5g K F (1
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A ZANE ABA R T R E iE S, B GmGT-2B
A T AR R A B T 5OV W E Y BE
TIPS ALGTLY 3R XK 4y 22 /0 He 3 U HA: )
e S TR B M K s AtGT-2 Like Wi i ¥ | 4h
AABA i 38 2 3K 05 AT e 38 AR OC BE A Y R
IR DL R AE SR B R AR R R A ) A
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DRemFoE ™ . ARG DL SR ACTT R ik 56 b4
BH, LA =8 B R S BT 0 G A T A R e
PRAE 75 i A P AS ) i A 3 AR A =X, A T 17 66 AT X
PR 5 AR A Y 30 0 e N L 3% A 5 R R T i R =
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L1 GRIesre ARS8 H Y 2 i B2 3
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AR R KM, 6B 16 h(27 C) FIEKE 8 h(19
C) o TRAERRTTAESE S5 o 43 0] 16 W02 B A AR
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(breaker, B) @i fa)5 4 d(B+4) )5 7 d(B+
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Table 1 The primers in the experiments
a1 4 i B4 )% %1 Sequence of primers (5'—3")

Name of primers

1E 7] Forward

JZ 1] Reverse

SIGTL1 CAAGAGCAGATGCACAAACAAT
SIGTL2 ACCATCAAGCTTCTAAGCTATCCG
SIGTL3 TTCGTTCAATCCTTCATTCGC
SIGTLA4 GATGAGAGAGGAGGCATGGAG
SIGTLS GCCAATGACAATGATAAAACCAG

CAAGGAAAGCAATAAGAGCCAA
TTTAAACTCCTCTTCCCCCTCCTC
ATCCATGTTGTCGCTCTCGTT
ATTCGGGGTTTGTGTGTTTTG
CTTTCCCCGAGGACGAGG

IR AECT —80 CukAa.

FRAE Zhu &L R A A0 IR 3R A B 7 % 43 5
K 100 pmol/L ABA,100 pmol/LL ACC(¥ F &
I SRR I B A 0 1R 22 K R B 2 M B B AT
R 1-E I R R ) . 50 pmol/L 2 Fij FR W g
(MeJA) .50 pmol/L GA; .50 pmol/L TAA %f 35 d
(3 4l BTk 1 R GRS 43 AT 0.1.2.4, 8,12
24 h {925 AW B, SR AR 3 BRI [R] 4 0 b s et
ARG R AR F R IR AT —80 CukAf
1.2.4 RT-PCR ##F R Trizol iX 7| #2 BUAE Py
BB 2 RNA, 5 5 PCR & il SYBR Premix Ex
Taq [I kit (Promega) fRFfAZ& (5.0 pL 2X SYBR
Premix i 0.5 pL 5[#.1. 0 pI. ¢DNA 3.5 pL 2
BFAK) . RIEB ML SICAC NS, kbR
H SIEF1a W Z", HiHS I RE 1. BdE5%
TR A DPS 15. 1 804 A0 1 3 48 $EA7T4E i (6]
25w E AT

2 AR5

E-EREARERSEHSH
62 SGN FIl NCBI % e J5 e SE . i & A

2.1

A

ATG
SIGTL1

ATG _ TGA
SIGTL4 L N T mm

sto ran
SIGTL2 = | L]

sto TAn
SIGTL3 L | L

GA

ATG TG
SIGTLS — i

L 1 L 1 L 1 ! )
0bp 0.5kb 1kb 1.5kb 2kb 2.5kb 3kb 3.5Kkb

swmrs -.z,:..k-cr. smkes iR
UTR ORF Trihelix == Coi oil

|| AR
The four helix

5ANE ZIBUE R (A g RS 3 N B 44 O SIGTL
~SIGTL5, 3, U4 SIGTL1 S A& 1 N
A it = WRE S5 H AL T 5 — A A i o A Y B
2N (B LA, A, 2 FF 5 L 4 B 1
W, SIGTLY A g i 19 28 5T N iy JC v T B = 1R e
S5k (B 1,B) Ut B N ui i D RE v RE & AE 1 U .
2.2 EZEBEEERMNFELSH

it — 2ot i R AR 1S A Y Rl 1k
KRET 4R 16 NEA NI LR, &2 W)
HEAL M7 2 W0, SIGTL2  SIGTLA ,AtDF-like I Ps-
DF1 J& T [7 ¥ 3 A ; SIGTLS 1 GmGT-2A, GmGT-2
like J& TIRJE L ; SIGTL1 5 GmGT-2B.SIGTL3 5
AtPTL 5y 5@ FRIVEIE N . [F B A 3 P Fb ) 3
PRI P[] 501 25 AT: 30 Y 2 i A — MR e 5k F 2 A ) b
R XS T REI T TR T BE
2.3 E=EEEERNREEXSHT

FMi ACT RN, SIGTL1 ~SIGTL5 3 K 78 fF
UL A 2k (E 4). SIGTL1 #E3#M A
1 238 TR ZEFIAE IR KGR s SIGTL2 T ot v iy 36
KVIEMR TR E L SIGTL3 tTER MZZ i R ik,
TE O Hr AR 2235 5 SIGTLA LEWH 48 5z h 4 &

o-helix

i

A. SIGTL1 3B Z5H 5087 3 B. SIGTL 3 P 4 A5 42 3k il 1) 285 ¥4 59 BT

A1

SIGTL H A J H: 4 18 2 56 1R 1) 45 49 20 B

A. Structure analysis of SIGTL1 genes; B. Structure analysis of amino acid sequences encoding by SIGTL genes

Fig. 1

Schematic diagram of SIGTL genes and their encoding amino acids structures
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Feik ARPURE A IK  SIGTLS B AL U 125 o asp Dhaer DIAABGA
P K. R R L E AT RW. E5 0
SIGTL3MSIRE T A S B B4 6 b 4 A RSE0]
G RE TR SR R A K. BA BT S SE2f
SIGTL3S Jtil 4 30 (et b sy s s . 22 £ 20 :
51 B R T A 0 0 7 A 25510
2.4 SZEREROEEESHH i1 NIl
T 0 4 B A WS R WK 3 TR, SIGTL1 oF vt e
HZ %) ABA % S, i KW & 476 12 h; SIGTL2 2o
% GA, Bl ABA S5 . i W B %2 A 75 4 A g
8 hsSIGTL3 2 5] GA, . MeJA fil ACC =i &, %Eg
GA, MelA A ESAT-F 2 b J5 i ACC iy fit Kk 22z
ST 24 h J5. )8 TR % S5 SIGTLA W] Wi Jif 25‘2
GA; MeJA Fil ABA Fl3# . 5 K0 Fi 53 B 76 4.2 F1 8 e

h, SIGTLS alma i GA; . MeJA, ABA, ACC 4 4

WO ELRKWRBETE | bR B SIGTLS Rt 5 4y
BN N . 45 FRTRLSIGTLY Mg 5 ABA (55 355 3.5
WA %, SIGTLS Bk % g T S22
AL T S£520
2.5 S=REEENELNTESH N 52200
R R BB MK & S o
AR 5 AN = IR E IR A R B A . 2 - 0:: 0o 1 2 4 8§ 12 24
o

200 mmol/L NaCl kb P J5 W & 5 Fros: MR,
SIGTL5W %35 T 1 h j5 2z 219 Hofth 4 A 1
Wi % 27 B s i B o, SIGTLS 1 SIGTLS aj i i
b AR A5 KW N AE 4 RN 8 h, JH b 35 R i A B
H O AT UL AR AR N L SIGTL3 F1 SIGTL5 %[5 7 fig
SE N BN I

W
T

[\
T
*

Expressions of SIGTL4
in hormonal stimuli
(98]

WM R SIGTLAZ L K1

ALAARARLRRRRN

AtPTL_At5g03680 0
{ AtEDA31_At3g10000 Lo 1 2 4 8 12 24
SIGTL3 N
I SIGTLS = 10
- k%
‘{ -[: GmGT-2A_EF221753 jTJ . z | E Fi
GmGT-2like XP_003533931 ® 3 ER| z
———— AtGT2 Atlg76890 k- 7 Chex
| SIGTL4 Ss= Of 2
SIGTL2 % 25 5T g
=} H
AtDF1-like_At1g76880 ez E 4T £
PsDF1_AB052729 BHEE2 3 £
AtGTL1_At1g33240 HZ= of |
SIGTL1 g H 1t 2
1— = Zs
At5g47660 = 0 EE
At5g28300 0 1 2 4 8 12 24
GmGT-2B_EF221754 AL F ) 8] Treatment time/h
—_—
0.20 1 22 0 S A B bR HE R (n=3) ; SR FH ¢ K56 . 46 I AS ) i B
At lEST; SL Fhli; Gm. K& Ps. Bi FREFHEKTFEEH 0 h g5, x P<0.05, x * P<C0.01
X " A 3 Jifi 5 A~ SIGTL FE PR X} #0219 22 38 53 %
2 R GTL 2 1 1 1 b i 5 AL ) 2857 B
Error bars represent the standard error of the mean (n = 3);

At. Arabidopsis thali 5 Sl Sol m Lyc sicum . .
rabidopsis thatiana otanum Lycopersicum * P <C0.05and * * P<C 0.01 represent significant differences

Gm. Glycine max; Ps. Pisum sativum between 0 h and other time by # test
Fig. 2 Phylogenetic analyses of GTL proteins Fig.3 Expressions of SIGTL genes under

in different species various hormonal stimuli
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Genes expressions
>

=3 SIGTL3

SIGTL4 SIGTLS

FiZA 2 Tomato tissues

RT. #; ST. 25; YL. 4hm; ML, A0 SL. 0k FL. 46; SP. #H; IMG. RS G MG, S @ ifiss: B min i
B+4 @5 4d; B+ 7 M5 7 do BN TPHMEGORMER(0=3) ; AEV/NE FRE R R H SN 22 57 835 (P<<0. 05) &R
Bl 4 i SIGTL Je PIAE A [] 2 21 3 2 A i
RT. Root; ST. Stem; YL. Young leaf; ML. Mature leaf; SL. Senescent leaf; FL. Flower; SP. Sepal; IMG. Immature green;

MG. Mature green; B. Breaker; B + 4, 4 d after Breaker stage; B + 7, 7 d after Breaker stage. Error bars represent the

standard error of the mean (n = 3). Significant differences (P<C0.05) are denoted by different letters

Fig. 4 Expression profiles of SIGTL genes in different tissues of tomato
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Fig.5 Expressions of SIGTL genes in roots and leaves when seedlings treated with NaCl
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M, 0 SIGTLS HI7E 12 h J5 FRAKE] 200 A&
fio G LR HPARN,.SIGTL3 ~ SIGTLS 3 [H

5 i ¥ A OGS

137 B AL 5 B . & B et AR N SIGTLS
SIGTL4 BN 3Z 215 e KRk & 43 5 AE 72 Fil 12
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F SIGTLA 3R Ty i v] g 5 WU IR A5 A0 56
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M SIGTLS (33A e RFIFTTE 12,12 A1 8 h, Kk
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4 °C treatments
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Gene expressions in

Gene expressions in
40 C treatments

40 CHEFR N A A KL 2604 7K

1 2 4 8 12
Ab PRI ] Treatment time/h

B 6 Fahi 5 A SIGTL 3 [H X 75 A 35 i 7 74 28 38 4 it
Fig. 6 Expression profiles of SIGTL genes in leaves of tomato seedlings treated with cold and heat
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0 1 2 4 8 12 24 48 72
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B 7 FA S A SIGTL He FRXF HUARAR 5 0 B 114 3 3% 43 B

Fig. 7 Expressions of SIGTL genes in leaves of tomato seedlings treated with mechanical wounding
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Fig. 8 Expressions of SIGTL genes in leaves of tomato seedlings treated with dehydration
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AT EEAEH .
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BUB 45 B K ol 38 A JE A I R s F . DL g
RATLLE 8R0S & B Rk g B2 ST
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