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Advances in the Studies of Plant Protein Phosphorylation
Modifications under Abiotic Stresses
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Abstract. Plants have the characteristics of fixed life. The abiotic stresses common in habitats such as high
temperature, low temperature, drought and salt which seriously affect the growth and development of
plants. Protein phosphorylation is an important mechanism for plants to respond to abiotic stress, mainly
through the phosphorylation and dephosphorylation modification of proteins to regulate the stress response
of plant cells to external stress, quickly transmit stress signals in plant cells and activate the morphology of
the stress environment. Physiological and molecular levels play an important role in the process of adapta-
tion mechanism. This article mainly introduces the enrichment, detection and identification techniques of
plant phosphorylated proteins, and reviews the phosphorylated modified proteome of plants in recent years
in response to abiotic stresses such as high temperature, low temperature, drought, flooding, salt, nutri-
ent deficiency and elemental toxicity. The progress of scientific research aims to provide a reference for un-
derstanding the protein phosphorylation modification of plants in response to abiotic stress.
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AW I IR RS AR BRAE AL RN A3 T HLE] AR R ALY
TE AR BRI o AR b P BT RS B
(Post-Translational Modifications, PTMs) & 4 %
Wi J7 =1 A= Flh 3 e B R i PR A B B 22— o BB 8 OKG 2
b W A 5 A E VE DRE R 82 VAR 15 IR] Y AH B
PE T AT 9 26 B 458 e g o AEL 00 1 403 35 . AL 40 v il
TR AL VAL L CBEAL SR FIEAL B R AL 2 R AL K
HeAl . SUMO Ak, 0 fiff 5 A6 25 02 % W PTMs 287,
A5 0 R A A ) T A AR W P R A )
FEAS e o | e Y PTMs, 40 i 3 Al i
=02 — W PR kAR B AL B M, HL B AL
S AE 5 e S e AR BT 30 7 AR BIL A A 3R 4 R R
P H AR

5T IR A A8 A AR b e il Y
Mergner % | F % st 41 8 1 00 4L R0l 192 A6 48 1
H XL B IF (Arabidopsis thaliana) #47 T € & 47
BT s e AR A B3 % 0 9 LR o7 18 210 MR H P AF
1E 43 903 DR AL A7 45, H A& A A 52 2 B IR
et i i o a5 8 B B AR R 22 57 v 5 38 85
B E WA K LEA 8 H R R LT 54> 2
R W& (Ser) . 7r & R (Thr) MIEE & R (Tyr) #F 0] DL #%
BRIRALAE M . 25 1 5T A B 1R Al A i 2 ARl 2 1 U8
it () HE AR AE TR 52 B  dd b K ATP 8 GTP 1y
T TR 5 A e e 30 i ) 2 19 o ) 8 R R Bk I S L
2 Ak, JF HoaT DL i 25 1 B 1R il o 5 B 2 i R AL
R T Wl R A 18 T 2 R A TE R R AL 0 = R
b H AP FE Ser, Thr #1 Tyr b ha W, H H % 5
SEAHYRN — R E RNl 2 R E A
PR A R 8 (5 S, S BN — 2B T
Moy PSS I Ca®' \Na' /K" 7% R (ABA)
FK A7 R (SAD A5 o HE T 0 AN 8] 4 W IR Ak i 4%
PR WP R A B e SR 0K, R B RE R Y AR B AR
P55 3 R S 0 SR R AR SR T B A . 2 P B Y
A R 25 i R A T L A2 B2 R B P 0 T v PR A%
38 JB 30 45 5 01 5 H Al 548 A LA T DT
TR T R R RS S RA RS M
FIAE B AL A5 e o ol AR, ST R R AR
BERR AL IR AR VA Y T AR P R 22 80 A BN A= AL i
7 QA R A AR R A CRNA A PR L 24
KE AR R,

PRI o BIF 5 A 0 i 3 I AR ) 38 0 2R 1 R
PAB i B G 7T L S T3 o 1 ) 22 S 2 P 3
R BRI A A5 5o DT 46 78 2 1 5 B A B R 1k
B SAEY PSP Z B R AT RER R . LK. A

TR AL E 1 4R S L M B B AN B BE A TR
PR o 4 2 A 58 A A ) e B3R R K L O TR
Sy FIOCER B 5 A5G AR A= My 3 i k5 v BUAS: 12 1Y)
PEE L B2 O R AR A P A BT R (R D

1 MWW L A A5 s ik

1.1 BBRUEENSBEEESE

WL AL 2R 1 AF 78 F B BUIR AL 2 1 (AR 1R
PR A T BT Wl T B 2 o WY 288 45 T AT e i, B 1
R ity H OB A 8 R A R B 1 A7 A )™ T Sl 1R A ik
B iy a5 75 i 2 Ak R B Y R 45 3 B RN R AR R
WAL A o 2H i B o0 B R4 A O HE . P, I
50 v SR FHVBOAR €893 A5 H R 0 2 A IS Y IR B TR
BT o B R R AT B T RO Y A A
A 3BT 3 AR Bl TR A Ik B R R Y K
A IHESh T IR AL R F B2 A D AT LSRR
PRS2 B PN 8 TR A 2 1, O o 1 8 i R A Wl TR
1B i 1 2 35 1R T
1.1.1 EHRE&EBFFEMEHR FMHEEEETFR
H1Z B (Immobilized Metal Ion Affinity Chroma-
tography, IMAC) £ AR 3= BRI €435 41 v iy [ AH 4
BE T (Fe' \Ga®" il Cu®" %) 57 [ & 1Y) #s iR 3L
VA7 i AR T 1) 256 R 0 A [) o DT 4 3 A I 6 1R
e VAT 1) 2% ot 5 e A o I 45 77 A= Wl 1R A ) K B 5
FUESRAE R . IMAC RE WS R iy 3 5 4R 22 W W 1k K
B8 53 P 1R A IR B 15 465 TR 5 1 1 A AR5 S A 22 1
By RO R, — 2 4 R B T By I R 2y i AR
IMAC SCRFEAR, BEARREBIR &9 0y pH E. 2
ARk 2 KR BB AP S B 0 K IR B A R ik
A D B2 T G  TTA ASCHRE T R A R B AR RO
ULAE KL WF 58 % 0 IMAC 4R Hh V8 2 603, W
CCC-Ti*" £F 4k B A (8] i P | Wi R AL 5 7 M 3 s 55
Fi i, T -G@PD FPRHEAT A My AH 24 L 2 oKk
SRR AL T -IMAC B4R 52 2% 22 W) R A 64 B
PR ALK A B R AU
.1.2 ER\UMEMENR SmALYENE
Br (Metal Oxide Affinity Chromatography, MOAC)
JE AT SEAE T B Y — b R AL B 1 B B R
i Z N FH B AR 22 A8 W) 8 R Ak 2 B B 2l e i g v
RIS (J atropha curcas)™ KB ( Broussonetia
papyrifera) M K 5 (Glycine max )" %,
MOAC fli Jil i & J& AL % 4 TiO, . ZrO, %5, H
Al s MOAC BYHLERATS SR AN RAR TS A, — Bk Ty i 26
& ALY Z 9 MAPEY) B AR PR MBI P 2B R T
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23 R R AR B B B R L S B ) Wl R B A
FHZE G s 7603 V5 VR v 3R L % ) ik, 5 1l 1R b
W B, TGS B o AR 8O . AN [R) 2R AU Y 4 Jm A AL
PRl AN [R) 26 T 1 e T2 A O 10 B AR 22 ) B KL
TiO, 1 1] T~ XF 2 8 1R Ak Bk B i) & 4 T Zr O, i [1)
xR R AL I By s RN 5 IMAC AL
MOAC W32 2 7 AR5 v P 45 5 09 T3 X 26 AR o R
PERR BB 4y MRt & W . A 1% /) =3 &
W2 A RCEE e R AR S R A Bk B Y 45 S
HOEN
1.1.3 BB FXHBEN RHETZHEN
(Strong CationExchange Chromatography,SCX) &2&
LT IR M VS W T 2 1 T K A S %) IR A A i B
1A IE A TR BERR AL Ik BER 270 2 4>t fir
T 7 B8 32 46 J2 4 v bl T O A ) T 4 35 Ot
BTk . SCX 7Emi IR Ak 35 F Bt 46 h i I I 8 22
EAL A7 7 R il 2 OROK AN R 43 9 A v ke s 1)
TR A IR B 45 Jmy BR 1
L4 HAEER HUAREOR I 202 8w &
FU R S HUR 5 B A AT s e ST, JF il
VKA 3 B I AR 1T A7 L O B R AT AR
FIE. PiRE AR BAT £ T Tyr 58
Mo B B4R . PUURTEAE N-Bi B2 & 1 o ol ik i & 4R
AR BB A AR 2 )R BR T PR RN D R b
B 5t Ah B A AT A IR B B i ] 1 . X
He—2 N-ER 5 F1 o sl I B AT U A 3 28 BR 4
T HAEBERR AL E A B AR TR R
1.1.5 FEERESTIEZE WERES VUL T8 1
AT ATE BRI S5 10 5 R Ak 1] i AR TOUE 24 A5 172
AR RN WS 5 10 £ 1 BT SRR T ok . W TR B
DUVE VL AT LAPR B | A 3t 23 185 s B K 5 0] 2
S Z P R ity v A P 280 B H AR A5 1 9 R Ak Ik
e PRI

O3B E AR KB T A A IR 2 A H R B
— R R BAC Y SR s 2 03 8 e AR T Y
WA R TN A &5 i e S BRIl . Gl 12 405 L UE 1k
AT LA AR SBORAE R A IO L 2 T 2 B 1) Tl 1 A o ik
JEAR, Al LA ] MOAC 8 IMAC #E47 & 4, AT
PR IR AL KR B . MOAC B {4 ) PR R 1k iR L T
PIfE IMAC RS IMAC 5. 4h 58 5 i 52 16 K 46 42
RE ). 7E SCX b, 7l A B fif 1) Wi R Ak Ik 5 B 52 )
4G RE 158 . AT 5B . 2 05 R E A IMAC, )
DA /D [ AH 25 5 97 far (9 45 6o DN 4 & IMAC
7B w AR . A R A DL L 5 IMAC

S5 G n] LA R e 0 R Ak Ik B Y AR T
I, 22 Bl 1R Al Ik B 43 25 1 AR ORI IR A 1 T R G
PR 8 YT AT . 0 H BB R A 8 1 B e R
A RT %
1.2 BBRUZEEmEN
1.2.1 Pro-Q DPS a8 Pro-Q DPS 4t H A 7
PATE SDS-Z PN I T iz B e 0 2-D B i b i 352 ]
(8 RF s I AT LA A T ol 12 A 4R 1 5L 0 22 SRR
Ak 7 2d W W 1 1K 45 5 BR i Z Sh Pro-Q DPS & ]
ARSI 8t W2 Ak o 2 b 0 B SO W O IS A R T
DNA RNA SR 70 79 . e s T i £
K (Zea mays) #i ] Pro-Q DPS 23#7 F . A ¥ 6 % 1y
W2 A A L A TR AR A B S & AR W R AL RS AR
R Pro-Q DPS HAT R b8 e i (L 3. (1
HAFAE R AN M6 55 o F 5P 22 19 Bt 50, Pro-Q DPS
e T 2-DE Ry 8 R AL & 1 Bk I, i 7 2-DE
A By ) R o AT BR 1 22 bl 2 AL 25 1 B R A
1.2.2 [RiE Jfii%(Mass Spectrum, MS) & X} &
F1 3 A 0 1 2 By i R )R A 3 /R R
(LC-MS/MS) AR H | & i iy 2 1H 5T 8 B2 161 1
MR O AR . B TEARRSEA & ED)
A Hod LD AR AR Al T nT RE 2 T AT AL
BT A R AR AT, By DA AE MS BOR 8 28 T0 i W
L Spicer 40 fF5E & B 3D HPLC-MS 7E fif
A AT Y EA SO 53 B R W AT R LA
ONE I AT R S i e i D NP 3 6 S
A HPLC-MS £ AR L. 6 4048 H K- Jo 3% 36
(CE-MS) 4 AR 75 29 A it & /0 43 B AR T &
SIATEEE R EE R A A FES I, C & E R
HPLC-MS ) #b 78 B FH 52 20 & 1 40 47
1.3 BBRUEERHNER

AR AR Z TP R BE B R L E R T
MS #8157 B 77 vk B AT 3R W] — i 9 4k 21 R B8
MRE ST, HET. ¥ M A PRM, Label free, TMT,
iITRAQ 1 DIA S8R . 55 73 P 3 FOKS B o0 1AL 4%
& JEfEHE T PRM 1Y & FE . LLRR i & 2 4 5 v Y
VR AR Y 5 T R A B ) KA i . Len-
nard S HESY WY BB PRM 5 502 0 B SR A
PRy Ty v ATV A T O R B BERR AL A
TSRk R BRE TR) A, U 5 A TiO2-PRM 5
B, TMT #H AR 2 H EE Thermo Scientific 2 & B
KRN — T 22 IR SR 10 i B R L AT R A 2 21 .6
2,10 dHEL 16 2H A 8] B i oh 25 A A X i
Li G Fr A 8 0 F 5 T - A2 W 4 5 1 A 4
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FJ (TMTpro) 9 16 Fif ] &t 55 o7 310500 = H A ) PA e
M ZH MR, I TRAQ o 2 %A &b 1 2 11 8%,
JREGHEAT AR EFR L s A 32 BR TG R R Ry BR TR AR 2
B, A B @ E, iITRAQ R AT LLTE N S
BN A R (Lys) M4 i 2 11 5T sl e 48 11 i 1k
JRMIFRIE . DIART B2 —Fp o] X8 1 5t/ BR B A
AT E WAL R bR ic 19 Jr i Hobr 10 il & i
5 ITRAQ AL, 7] 2 56 8 AR i O 3 o — 4 i
(] 437 3% e 75 2 7 04 1 o A R AT 8 B B, DIA
454 7 DDA Fil SRM [ 4RF s K B A4 4538 61 55 43
M TR BB OARGE R R CREE O
A RE AT FEEY . DIA THEE
H b5 KB, 38 1 T FR 94 A 808 50 R T o I
BV RT S B 2 M IR R S 0 2 [R] BEECE TT LA
813 , 46 H A% 48 DDA il SRM B A7 B @ 4300, 4
AR 5 vk T B A 2% CRE B (R S A8 AR S K
FIP A% Byt . Label free AN & 5 i B0 . I & 57 Y
JrkPY . AE Label free 95 [ R BFIE N BRI T 45
RS SN /W TR (A= - SN CRe 1 (> & X
PRI TR,

2 W N EE A ) PR A

2.1 RiERriE

XA S AR e S v I a CR T
0 COFIRERINE CUNT 0 C) o AR B8 2 52 i #4
A I RS b DXV 22 SR ) AR A L 0 A R Y

IR W 38 3 58 B 5 Ry s E AR L
Az T A TRE 3 B B G O (I I I AR R
{&. Hsu 2027 BF 9% T & #i (Solanum Lycopersi-
cum ) TH ¥ il 22 AV BURGR R 7EARIR 38 T r s A
JR W R AL S S5 2R s L B 5 000 A Y i R A 2R
FUBLE 2 il 28 09 26 6l vh BAT 35 . SnRK2s & H:
JIE ) TG A B T 3 6 TE IOIR P AR R A
Chen ZEM W58 T 2 JA s B9 K 78 (Oryza sativa)
FRAEARIR 8 N 5 ®EER AL SR, AR 730 AN E B
SE 115 A BRIR AL E B PR B R 12 AN
F BRI T ANE A R R, X227 RINEH
PR S5 AR 5 L 2 IR s K AL 5 P40
U By A 0 AN R AR A R . PSS SR
TR0 T R A 4l B S, R 2R 6 h AR Ak
AR A B 427 DEERA KA T B E
MARIR AL R 48 h 5 & A W A A B A5 )L S O B
611 MR AL 8 1 K AR 3 8 Al X 288 A ] fE

2 Rl AR O AT OC 8 R CKILL B A 438 43 Bt
ZERRW BN EE A TR SRR P WE S
S VE PR B R R LR OO 2 A 5 b
KM AL A R T B EFELY . Gao 7
F#E (Musa nana) I RKE (Musa X paradisiaca) &
TRLIEN A T R Ak B ST 2 BEAT A ST R B R A v
i MKK2 R 15 5 18 5% I H: il 8% 12 16 2 1 e 9K
AR UL 30 A4 T AR . LR OT 22 RSO
B 1 (MEKKLD) 75 B 3O 45 5 b i &
BRI AR AR A T, 4 B R MEKKT B 82 1k
A 2253 FLFE A SRS 2 (MKK2) 78 Ca®'
FAS R HAEAE T - MEKKL (185 FR f 3 a7

TEAF ) 20 L v J5 3t 3 M ) A A 2 IR R B 38
(1 2 B R . FEARIR P8 R L BT AR e AR
F A 1(CRPKLD) W] DA 14-3-3 2 1 B W2 1L , o 2
AR 14-3-3 25 1 DA Jo0 28 42 ) 40 A%, 5 G B ) 78
N e PELE A B (CBF) AH B4 I 34 HOR a5
PE L XA AT LATE AS W2 A 19 30 58 25 00 T S0 e
FIuE ALK AR, Ding & BFgE W OST1
TEAU R IR N AR 1k BTF3 Al BTF3L, I 42 ¥ &
i15 CBFs BYAHE AR, L2 AR B8 T~ CBF
R o 1 » DT 36 9 AT B KT 0 . T iR A e
CBF £ i #f o 1 ) 0 1 2€ ¥ 1 — FhopL il H—J7 T
A3 A S AR 53— T T HR T A B R AR .
L0 X TR ) 7 ) 58 TR A A s 81 5 AR L R AR
RS 7 R T S AR . Ceclia 55 78 7K Fe i
BRI B8 B BF 52 2 BT OsCPK1T /) 6 AW TE
LIPS e LYSRo F NIV EANZIDNE, 373 SRR S LN
AP AS D o 7S R W R B i OsSPS4 /K i 18
A OsPIP2, OsPIP2 # OsCPK17 LA 4% 4K #i (1) J5
BRI GR D,
2.2 miEkiE

e vl IR AR A Y A R BB L O X AR W 1 A
Kk B A LR . B AR A% AR BE R ) A K
S H i B B T A A R s R A
I BIF 5 3 G 22 W SRR ) A 4 - 0 3R (Spina-
cia oleracea)™" ARG I VEH T8 (Medicago sati-
va)P NG (Triticum aestivum)PY K GPY  KFE
(Hordeum vulgare) I F1F P 4, Zhao 2051 %t
i P 9 3 Sp75 7 M 3E R 0 B R Ak R F1 B 2H
WEFE LRI 45 A8 E 0 B IR A6 K P & AR A2 Ak, X
LEASSFESHS RS s E AR
T UL B0 R AR 55 L A B T 0 R RN
MY REN . Liu PN BT 84 (Vitis vini fera)
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Table 1 Phylogenetic modification of plants under abiotic stress
A A5 W iy 30 25 A LK HH AR T g E BN
Type of abiotic stress Species Tissue Related function Reference
= va sati SR JEP 7 L T A3 L B A S B Redox balance,
KH Oryza sativa #id Root material metabolism. defense reaction (25]
ik S ; i {555 5 B A& A8 Signal transduction, pro-
Low 9H Broussonetia papyrifera M Leal tein modification and translation Lo
temperature
AW IF Arabidopsis thaliana e Root Bji #8021 i€ Defense functions [29]
T Solanum Lycopersicum I Leafl {5 5% 5 Signal transduction [24]
T‘(e%njfeﬂzj—;z%re WA Vitis vini fera I} Leaf Bl 1 35 g Defense functions [38]
stress /R
INFE Triticum aestivum Leaf and Bt 21 fig Defense functions [40]
i spikelet
=) (L
High R IT Arabidopsis thaliana i Leaf B 8 B fig Defense functions [32]
temperature
ﬁ%?l‘é ?‘%(ﬂéiﬁ \%?Klﬂﬁlﬁ\%ﬁﬁﬁ*ﬂ%ﬁﬁfﬁﬁ
G ar o . Signal transduction, vesicle transport, transcriptiona .
B3k Spinacia oleracea M Leaf regulation, substance synthesis and substance metab- [31]
olism
W IF Arabidopsis thaliana M Root Bi 0 B fig Defense functions [42]
RSN Brachy podium distachyon i Leaf B 8 21 fig Defense functions [46]
2 g A B A 9% 3% E T Sional transduc
e ” L . FO RS B A G B RN 2 3B PR 1T Signal transduc- ,
/M Triticum aestivum R Fruit tion, substance synthesis, defense and osmotic regulation [47]
eI A% 42 1) Lk PR 3 0k R 4 AL ) S 4 6 i A2 Epige-
Ee EK Zea mays MR Root netic control, gene expression and cell cycle depend- [49]
Drought ent processes
W% Malus baccata It Leaf ik & 4L Carbon and nitrogen metabolism [52]
n$iil a . . S dfe 36a e Ny N [
wkain (55 R 9 A D 1
¢ T VAT Ammopi ptanthus mongolicus H Root Signal transduction, transcriptional regulation, os- [51]
motic regulation, defense and epigenetic regulation
N ! i Jef ME W B8 fa L BE i R3S Photosynthesis, ma-
Tk Zea mays M Leat terial transportation, energy metabolism £50]
IKFE Oryza sativa I Leaf Bli 88 21 i€ Defense functions [55]
=N N = I ~ < : < < V-
"k K5 Glycine max . Root Ilh‘e?f; S W F A K Signal transduction, substance syn: [54]
Flooding o
S0 EE A L L : is -
K Kandelia candel M Leaf %E‘iﬁ‘ . fig 1 AL 14} Material metabolism, energy me [53]
tabolism
NN . I FIAR Yz b (5 5 S W B0 Material transport,
Tk Zea mays Leaf and root signal transduction, material metabolism (56]
ER S NN , s s _
S:ﬁﬂz}l;\%ss Bk ZE Abelmoschus esculentus I Leat jgl?oj:ﬂ”*u RNAFEfft Photosynthesis and RNA degra [62]
Ly e L B (O o o .-
W IT Arabidopsis thaliana I Leat fﬁiﬁfﬁ*uh 3 Carbon metabolism and signal trans [60]
N . ] . . _
BIHESE Arabidopsis thaliana i Root iﬁ(ljgliojfﬁu i 554 5 Material transportation, signal trans [67]
F PR & Lupinus albus M Root Bt B fig Defense functions [66]
o SR T A2 ~ abolism s ;i ans-
Nu?’iiﬁdﬁiicn EK Zea mays 4 Root gﬁiﬁf}iﬁ 55 %% Carbon metabolism and signal trans [13]
KFG Oryea sativa  Root RNA_ G J RN B AT 3 RNA synthesis and carbon me [65]
tabolism
L IF Arabidopsis thaliana H Root {5 5% 5 Signal transduction [63]
U IT Arabidopsis thaliana I Leaf Bi 0 B fig Defense functions [70]
AR AT 5 5 5 JE IR SRR R ) TS B R
I AR [ fE 2) i Material metabolism, signal transduction, [69]
TLEGE Leaf and root gene expression regulation, material transport, mem- )
Elemental poisoning = . o brane fusion and defense function
IKFE Oryza sativa
{5 515 5 N BT 2 A0 G 1 4P f 4% Signal transduc-
- Leal tion, stress tolerance, reactive oxygen species neu- [68]
tralization, etc.
Ny NP . . .
5 24 W8 Compound stress Tk Zea mays W Leaf {555 S P P BE Signal transduction and defense [71]

functions
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7 TE e U 3B A SO B B E A 19 AW IR Ak R
F R4 s T8 s AR e AT A DI RE A3 R F g R T,
Ser FUHG 2 1R (Arg) 5 $2: P+ 0 3= B 3 i Jst K AE T
e R R AT BE R AL . 7E X H BE (Saccharum
of ficinarum) FEAT i i P 30 B A BAZ 0 R
fiti 1(NDPKD) 4R ic i B AR Ser /b 4020, 9f HiX
i 25 Wl W2 A6 BF B 5 NDPK i 3% 4 09 3 i, /B ND-
PK1 #EMH B ( Nicotiana tabacum ) 40 Mg b 1% 752 3 o<
B A B R b ol B S P R A AR R L. Vu
SEVOTRIRGE T 0w R R R I N 22 R RN R
H BT 2 A S L 45 SR SR T L i R AN o o) 2 e
3 822CF 5 178 MM AL AL O A1 S 581 /> B2 ik
(7 023 MBERRAL AL 250 5 i J v (9 5% & 4V F AL il
Xof Y T v v U T /0 A Y R 00 35t A2 R 4 0L
TEAFH & T 4 A8 v A2 ey 1 DAl R A ARl P =™ 4
P R I T — A2 4 2R 1k 1 oA G 1Y A 4 8
PR A ke 5 B AR A ML L 3X AT RE TR IR BE AR 5 AR 5 R
KHAEHT . Takuya 88X & iR T MK A% 0 R k47
R 1L 8 A WY, & B 2 0k rp 1 2] 1 W R 1k K O
B X AT RETE B K AL B AR B b R AR AR .

3 WAL ZK g A 3 ) TR A S

3.1 F B

Maszkowska 885 X S e T 19005 JF 47
iR 1k & (1 4l 2% 4 M, NFL MG & (i i 2
(SnRK2s) 7£52 £33 i W30 09 4 vh s . OF B
A ABA 5 508 8 5 8UM K & 1 ERD10
A ERD14 4 i f2 1k . I HL#% B 1k 18 25 il ERD14
(5 7 . SnRK2s J2 I8 45 48 4 X 1 an -+ 52 0w 36
L35 15 300 1 38 1 R ) SRR A 4 R F 3 4 BA
Raf H ) MAP 3 i 3 5 B (MAPKKKSs) 788 %
W38 B R AL T BTG W28 T SnRK2s DLW R 35 33 i
M, Raf BE3EE (RAFs) 19 B2.B3 Ml B4 iF 5 %
FE R 05 a0 L KU R I ) ABA 5 S5 R
A CHEFT s B2.B3 il B4 RAF #1185 JF P o
& SnRK2s 8 {2 1k A1 300G B 0 35 190 . Xue 250
VUG 5 92 37 W 30 R LR IT A 169 SRR kB2
WA EE L 299 AN BEIR BKBS & A R H . Yuan
L=l alE 9% % I, — B840 AR BE ( Brachy podium dis-
tachyon) @M A6 0.6 F1 24 h 19T R Wil F &
10Tl T2 Ak 7K ST 35 A I 3 78 Ak e e 1 W TR 1K KO
RAEETFWE 6 h,

Zhang %58 3 X S0 R 0 A /N 22 i
TR A2 T4 Lb 30 B R R 61 Rk &k (7 T

AR R AT B AR A D RE 4 B R B St e g iR
HEZHESHS . ER EARNSRERITE.
Wit o LA K T g B 1o By A, A T R R K, GX s
SCPL # [ it AT GE 75 43 7 i A 101 iy 2 518 2 AN
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