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Abstract: RNAIi expression vector of cycloartenol synthase gene (PjCAS) from Panax japonicus was con-
structed by Gateway technology in this study, and Agrobacterium-mediated transformation was used to re-
alize RNAi of PjCAS in P. japonicus cells successfully. Real-time quantitative PCR was used to analyze
the expression of key enzyme genes involved in the biosynthetic pathway of P. japonicus saponins (P]S),

the changes of saponins and phytosterols in transgenic cells were also determined, and the regulation effect
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of PjCAS on the synthesis of PJS was discussed. The results showed that: (1) the RNAi fragment of P;CAS
was amplified, and the PjCAS RNAIi vector pHellsgate-PjCAS was successfully constructed. (2) Six pos-
itive transgenic cell lines with PjCAS interferance were obtained by Agrobacterium transformation. (3)
Compared with the ordinary cell line, the expression of PjCAS in transgenic cell lines was approximately
decreased by 85% , and the highest expression levels of key enzyme genes PjDS and PjAS directly related
to saponins synthesis were up-regulated by 90% and 150% , respectively. (4) The contents of six mono-
meric saponin in the transgenic cell lines were significantly higher than that of control, among them, the
average contents of dammarane-type monomeric saponin Re, Rbl, Rd and oleanane-type monomeric sapo-
nin RO, IV, IVa were higher than that of the normal P. japonicus cells, increased by 28%, 49%, 40% ,
36% ., 59%, and 50% , respectively. The results indicated that the change of PJS content is indirectly reg-
ulated by PjCAS gene. (5) The phytosterol content in six transgenic cell lines decreased by 53% —73%
than that in control group. Studies have found that silencing PjCAS gene can significantly up-regulate the
expression of key enzyme genes P;DS and PjAS related to the synthesis of PJS, and increase the content
of monomeric saponin in the cell lines with PjCAS, thus promote the significant increase in the synthesis
of PJS. The results prove that the metabolic flux of the branch of phytosterol synthesis could be decreased
by inhibiting the expression of PjCAS, the key gene in the biosynthetic pathway of phytosterols. As a re-

sult of it, more metabolic {lux flowed towards the synthesis of PJS and the biosynthsis of PJS was promoted.
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ACCT. Acetyl-CoA acyltransferase; HMGS. 3-hydroxy-3-methylglutaryl-CoA synthase; HMGR. 3-hydroxy-3-methylglutaryl

CoA reductase; IDI. Isopentenyl pyrophosphate isomerase; GPS. Geranyl pyrophosphate synthase; FPS. Farnesene pyrophosphate

synthase; SS. Squalene synthase; SE. Squalene epoxidase; DS. Dammarenediol-1I synthase; B-AS. B-Amyrin synthase;

CAS. Cycloartenol synthase; P450. Cytochromes P450; UGT. Glucosyl transferase
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The biosynthetic pathway of saponins and phytosterols in P. japonicas
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Fig. 2 RNAIi amplification product of P;CAS gene



1820 [T - 7/ B S 40 #&

Xba |
— Tnos npt 1l P nos T ocs attl 1 CAS attl 2
I —— Xbal
LB
PDK
T P35S attl. 1 Cc4S attl.2 Intron
RB Xho 1 Xho 1

LB. 2% T nos. NOSZIETF ;5 P nos. NOSIRBIT; T oes. OCSZIEF; P 35S. 35S )3sh¥; RB. /LA
H CAS RNAI Bl id [ 1 B 24l A pHellsgate2 B Xba T A siH Xho T i sd
3 Y kL pHellsgate-PjCAS [ 454
LB. Left border; T nos. NOS terminator; P nos. NOS promoter; T ocs. OCS terminator; P 35S, 35S promoter; B. Right border;
The CAS RNAI fragment was inserted into the Xba | sites and the Xho | sites of the pHellsgate2 by means of inverted repeats

Fig. 3 Structure of recombinant plasmid pHellsgate-PjCAS
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Fig. 4 Enzyme digestion verification of recombinant
vector pHellsgate-PjCAS

* * indicated significant difference between transgenic line and

WT (P<C0.01). The same as below

Fig. 6 Relative expression level of PjCAS in
P. japonicus cell lines
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