PEALAL 4R . 2020,40(12) 12017 — 2022
Acta Bot. Boreal. -Occident. Sin.

doi:10. 7606/j. issn. 1000-4025. 2020. 12. 2017 http://xbzwxb. alljournal. net

fHE NtSKOR1 EE 5[ R INEE T

HELLEFLLEARLCREALR OB LRI BT

O =MW RERABHABETE B R 65002152 5 o4 M 28w B WA 24 =l dk o A 7). R 652200)

B HEIT AtSKOR & HF 41,8 it NCBI B Blast # R FA3 M5 NeSKOR1 27 CDS F41, #%
K CDS ¥ #5148 i RT-PCR J5 & AR 85 00 2 rh 50 B2 45 3 NeSKOR1 SEH % H AT AE W M5 B 2% (R b HE
PEZE M7 T AL CRISPR/Cas9 # AR 3K NeSKOR1 R REBR 8L, 2552 W] . (1D NeSKOR1 %5 CDS H 2 466 bp
KA BRI, , i 821 D HEIR L HEI NtSKORI & 45 H 50 6. 36,70 T8 24 94. 21 kD, (2)NtSKORI 5E i T4
JRLRSE A5 6 A5 X, o5 5 K731 s NtSKOR1 25 & A LB 5K (P) B 4 2 25 1 X (ANK) 48 it 7 SKOR 248 1
DfgH. (AR HT R IR NeSKOR1 & [ 5 %80 A 542 2 ) SKOR 25 (3815 B 3 IR, 5 R A BHE Y 1Y
SKOR % 1 LB BE ., (DHSEEFERIK S EY], NISKORT W EE M E AR b F ik, kAL 51
AT — B0 H A AL LS . NeSKOR 1 AR [H 2 58 B ARG T 15 B AR 1 2 aA B0, (5) CRISPR/Cas9 #iBk NtSKOR1
FEDR S J O S AN, 2 NeSKORT 3k PR 42 il J0 v 40 B0 7 1 SC B 6 IR 22— AT 9% 485 21 A it AT S
BB WG 32 1 43 AL T B AL AR

SR MM ; NeSKOR 15 35 H B8 [ s THRE 43 #

FESES.Q785; Q786 MEARERS: A

Cloning and Function Analysis of N¢tSKOR1 in Tobacco

GAO Yulong', SUI Xueyi', WANG Bingwu', SONG Zhongbang',
ZHAO Lu', YANG Dongsheng”, JIAO Fangchan'

(1 Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China; 2 Shilin Branch of Kunming Branch of Yunnan

Tobacco Company, Kunming 652200, China)

Abstract: In this study, the tobacco NtSKOR1 gene that is homologous to AtSKOR gene in Arabidopsis
was identified from tobacco via NCBI Blast and RT-PCR. The bioinformatics and expression characteristics
of NtSKOR1 were analyzed, and the knock out materials of NtSKOR1 was obtained by CRISPR/Cas9
technology. The results showed that: (1) full length CDS of NtSKOR1 was found to be 2 466 bp, enco-
ding a sequence of 821 amino acid residues, and successfully cloned with gene specific primer pair by RT-
PCR. The isoelectric point of this protein is 6. 36 and the molecular weight is 94. 21 kD. (2) The subcellu-
lar localization result of NtSKOR1 showed that this gene was localized in cell membrane. Amino acid se-
quence analysis showed that this protein contains 6 trans-membrane structures, but with no signal peptide
sequence. As a typical SKOR family protein, NtSKORI is featured by pore-forming domain and ankyrin
structural domains. (3) Phylogenetic analysis showed that NtSKORI protein is close to SKOR proteins
identified from tomato and potato, while is distant from the SKOR proteins of Gramineae species. (4)

Tissue specific expression analysis showed that Nt.SKOR1 was preferentially expressed in roots, which
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was in line with AtSKOR1 expression pattern in Arabidopsis. After potassium stress treatment, the ex-
pression pattern of Nt.SKOR1 showed a fluctuant trend. (5) CRISPR/Cas9-based genome editing of NzS-
KOR1 significantly decreased the potassium content in the leave of transgenic lines, suggesting NtSKOR 1

gene is one of the key genes in controlling potassium content in tobacco leaves. Our results provided signif-

icant evidence of the molecular mechanism of potassium intake and transport in tobacco.
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