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Advance in Plant Xylem Hydraulics

WANG Ruiging, ZHANG Li, GUO Lianjin, ZHU Hai

(College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi 334001, China)

Abstract: Plant developed safty and efficient xylem vascular system to support long distance water trans-
port so as to provide sufficient water to photothesysis organs. Xylem water transportion play an important
role in transpiration, stomental movement, carbon assimilation regulation, therefore be termed “backbone
of plant physiology”. Plant hydraulics is the central hub integrating plant and ecosystem function. The
present paper summarized the hydraulic mechanism of water transport and the limitation of transport sys-
tem in plants, highlighted the relationship between the structure and function of xylem vascular. The for-
mation mechanism and induce methods of xylem embolism were described. Trade-offs between safety and
efficiency of water transport system were analyzed. The molecular biology of cavitation and the importance
of aquaporin in xylem refilling were discussed. Prediction model as for plant response to environment and
drought induced mortality were summarized. The methodological issues were introduced, and the debates
on the validity of xylem against pressure refilling and exponential xylem embolization vulnerability curve
were discussed. Finally, achievements in xylem hydraulics were summarized, and research chances and
prospect were also discussed.

Key words: xylem hydraulics; embolism vulnerability; safety and efficiency; xylem refilling; water rela-
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