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Abstract: Trichomes are derived from the extension of plant epidermal cells and are a unique structure. tri-
chomes can be divided into glandular and non-glandular trichomes. Glandular trichomes are secretory tri-
chomes where a large number of secondary metabolites are synthesized, stored and released. Glandular tri-
chomes often secrete different types of defensive substances such as terpenes, amino acids and phenylpro-
panes, acylsugars, fatty derivatives, etc. These secondary metabolites can protect plants from biotic and
abiotic stresses and have important defensive effects. Therefore, this article summarizes the types of glan-
dular trichomes, the synthesis and regulation of defense substances, and focuses on the study of its syn-
thesis pathways, regulation mechanisms and transport mechanisms to provide references for the research
on the biosynthesis and genetic improvement of defense substances.
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Type I glandular trichome, consisting of 6—10 cells and 2—3 mm long, globular and multicellular base with a small and round glandular
cell in the trichome tip; Type Il non-glandular trichome, globular and multicellular base, 0. 2—1.0 mm length in total; Type [l non-glandular
trichome, thin non-glandular trichome consisting of 4—8 cells and 0. 4—1. 0 mm long with a unicellular and flat base; Type IV glandular
trichome, similar to Type I, but shorter (0.2—0.4 mm) and with a glandular cell in the tip. Trichome base is unicellular and flat; Type V
very similar to type IV with respect to height and thickness, but non-glandular; Type VI glandular trichome, thick and short glandular
trichomes composed of two stalk cells and a head made up of 4 secretory cells; Type VI very small glandular trichomes (0. 05 mm)
with a head consisting of 4—8 cells; Type Vll non-glandular trichome composed of one basal and thick cell with a leaning cell in the tip

Fig.1 Eight types of trichomes commonly found in Solanaceae”
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AACT. Acetoacetyl-CoA thiolase; HMGS. 3-hydroxy-3-methylglutaryl-CoA synthase; HMGR. 3-hydroxy-3-methylglutaryl-CoA
reductase; MK. Mevalonate kinase; PMK. Phosphomevalonate kinase; MDD. Mevalonate diphosphate decarboxylase; IDI. Isopentenyl
diphosphate isomerase; IPK. Isopentenyl phosphate kinase; FPPs. Farnesyl diphosphate synthase; DXS. 1-deoxy-D-xylulose
5-phosphate synthase; DXR. 1-deoxy-D-xylulose 5-phosphate reductoisomerase; MCT. 2-C-methyl-d-erythritol 4-phosphate
cytidylyltransferase; CMK. 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; MDS. 2-C-methyl-d-erythritol 2,4-cyclodiphosphate
synthase; HDS. (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR. (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase

Fig. 2 Terpenoids biosynthetic pathways in plants
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Fig. 3 Amino acid and phenylpropane synthesis

pathway in plants™
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Fig. 4 Model of acylsugar metabolism pathway
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