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摘 要:植物毛状体来源于表皮细胞的延伸,是表皮细胞的特有结构。植物毛状体可分为腺毛和非腺毛,腺毛是具

有分泌作用的毛状体,也是大量次生代谢产物的合成、储存以及释放的场所。植物腺毛常分泌不同类型的防御物

质如萜类、氨基酸及苯丙烷类、酰基糖、脂肪类衍生物等,这些次生代谢物质能够保护植物免受生物和非生物胁迫,

具有重要的防御作用。该文对近年来国内外有关植物腺毛的类型、防御物质的合成与调控等方面的研究进展进行

综述,并重点对其合成途径、调控机理与转运机制的研究进展进行梳理,以期为防御物质的生物合成和遗传改良研

究提供参考。
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Abstract:
 

Trichomes
 

are
 

derived
 

from
 

the
 

extension
 

of
 

plant
 

epidermal
 

cells
 

and
 

are
 

a
 

unique
 

structure.
 

tri-
chomes

 

can
 

be
 

divided
 

into
 

glandular
 

and
 

non-glandular
 

trichomes.
 

Glandular
 

trichomes
 

are
 

secretory
 

tri-
chomes

 

where
 

a
 

large
 

number
 

of
 

secondary
 

metabolites
 

are
 

synthesized,
 

stored
 

and
 

released.
 

Glandular
 

tri-
chomes

 

often
 

secrete
 

different
 

types
 

of
 

defensive
 

substances
 

such
 

as
 

terpenes,
 

amino
 

acids
 

and
 

phenylpro-
panes,

 

acylsugars,
 

fatty
 

derivatives,
 

etc.
 

These
 

secondary
 

metabolites
 

can
 

protect
 

plants
 

from
 

biotic
 

and
 

abiotic
 

stresses
 

and
 

have
 

important
 

defensive
 

effects.
 

Therefore,
 

this
 

article
 

summarizes
 

the
 

types
 

of
 

glan-
dular

 

trichomes,
 

the
 

synthesis
 

and
 

regulation
 

of
 

defense
 

substances,
 

and
 

focuses
 

on
 

the
 

study
 

of
 

its
 

syn-
thesis

 

pathways,
 

regulation
 

mechanisms
 

and
 

transport
 

mechanisms
 

to
 

provide
 

references
 

for
 

the
 

research
 

on
 

the
 

biosynthesis
 

and
 

genetic
 

improvement
 

of
 

defense
 

substances.
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  腺毛是植物表皮中具有分泌作用的毛状体,它 能分泌大量的次生代谢物质并储存在细胞壁与角质



层[1]。这些分泌物可防御一些植食性昆虫和病菌的

攻击。大约三分之二的植食性昆虫以活体植物作为

主要食物来源,它们通过咀嚼或穿刺叶片等方式对

植物造成直接损伤,同时自身携带的病菌也会在植

物间进行传播[2]。这些直接或间接的侵害极大地降

低了农作物的产量,危及粮食安全[3]。一些植物腺

毛分泌的防御物质对病虫有直接的毒性,能够毒害

植食性昆虫和阻止病菌的繁殖。通常这些防御物质

包括萜类、氨基酸及苯丙烷类物质、酰基糖、脂肪烃

衍生物等。人类可以利用代谢工程将腺毛转化为

‘化学工厂’从而制造杀虫剂、香料、药物、油脂、色素

等用品[4]。腺毛分泌的防御物质具有较高的商业价

值,因此,对植物防御类物质的合成、调控、储存与转

运进行研究将为更好地利用植物资源奠定基础。

1 植物腺毛的类型

植物毛状体来源于表皮的延伸,它的大小从几

微米到几厘米不等,主要存在于植物的叶和茎中。

毛状体可根据形态及分泌能力分为非腺毛状体与腺

毛。茄科、菊科、唇形科植物叶片中存在头状、盾状

腺毛[5]。头状腺毛由基底细胞、茎细胞、茎尖分泌细

胞组成,而盾状腺毛茎细胞较短,头状腺毛分泌细胞

上含一个储藏腔[6]。根据形态及功能可将茄科中的

毛状体划分成8种类型(图1),包括4种腺毛(Ⅰ、

Ⅳ、Ⅵ和Ⅶ型)和4种非腺毛状体(Ⅱ、Ⅲ、Ⅴ和Ⅷ
型)[7]。在腺毛中曾检测出多种防御物质,且不同形

态的腺毛常含有不同的防御物质,在野生潘那利番

茄(Solanum
 

pennellii)中Ⅰ型和Ⅳ型腺毛中检测出

酰基糖[8],在番茄(Solanum
 

lycopersicum)Ⅵ型腺

毛中检测出萜类物质[9]。

2 防御物质的种类与作用

植物腺毛内含有以下几类防御物质,萜类、氨基

酸及苯丙烷类、酰基糖、脂肪类衍生物等[7,10]。萜

类、酰基糖类防御物质通常对草食性动物以及微生

物有直接的毒害作用,而某些氨基酸及苯丙烷类衍生

Ⅰ型腺毛,6~10个细胞共约2~3
 

mm长,基部多细胞球基状,顶部有较小圆形腺细胞;Ⅱ型非腺毛状体,共约0.2~1.0
 

mm长,

基部多细胞球基状,顶部无腺细胞;Ⅲ型非腺毛状体,
 

4~8个细胞共约0.4~1.0
 

mm长,基部单细胞较扁平,顶部无腺细胞;Ⅳ型腺毛,

与Ⅰ型类似但长度更短只有0.2~0.4
 

mm长,基部单细胞扁平;Ⅴ型非腺毛状体,其高度与厚度与Ⅳ型相似,无腺细胞;Ⅵ型腺毛,

有2个茎细胞组成,顶部4个腺细胞;Ⅶ型腺毛,只有0.05
 

mm左右长,顶部4~8个细胞组成;Ⅷ型非腺毛状体,基部细胞较厚,顶部细胞倾斜

图1 茄科中常见的8种类型毛状体[7]

Type
 

Ⅰ
 

glandular
 

trichome,
 

consisting
 

of
 

6-10
 

cells
 

and
 

2-3
 

mm
 

long,
 

globular
 

and
 

multicellular
 

base
 

with
 

a
 

small
 

and
 

round
 

glandular
 

cell
 

in
 

the
 

trichome
 

tip;
 

Type
 

Ⅱ
 

non-glandular
 

trichome,
 

globular
 

and
 

multicellular
 

base,
 

0.2-1.0
 

mm
 

length
 

in
 

total;
 

Type
 

Ⅲ
 

non-glandular
 

trichome,
 

thin
 

non-glandular
 

trichome
 

consisting
 

of
 

4-8
 

cells
 

and
 

0.4-1.0
 

mm
 

long
 

with
 

a
 

unicellular
 

and
 

flat
 

base;
 

Type
 

Ⅳ
 

glandular
 

trichome,
 

similar
 

to
 

Type
 

I,
 

but
 

shorter
 

(0.2-0.4
 

mm)
 

and
 

with
 

a
 

glandular
 

cell
 

in
 

the
 

tip.
 

Trichome
 

base
 

is
 

unicellular
 

and
 

flat;
 

Type
 

Ⅴ
 

very
 

similar
 

to
 

type
 

Ⅳ
 

with
 

respect
 

to
 

height
 

and
 

thickness,
 

but
 

non-glandular;
 

Type
 

Ⅵ
 

glandular
 

trichome,
 

thick
 

and
 

short
 

glandular
 

trichomes
 

composed
 

of
 

two
 

stalk
 

cells
 

and
 

a
 

head
 

made
 

up
 

of
 

4
 

secretory
 

cells;
 

Type
 

Ⅶ
 

very
 

small
 

glandular
 

trichomes
 

(0.05
 

mm)
 

with
 

a
 

head
 

consisting
 

of
 

4-8
 

cells;
 

Type
 

Ⅷ
 

non-glandular
 

trichome
 

composed
 

of
 

one
 

basal
 

and
 

thick
 

cell
 

with
 

a
 

leaning
 

cell
 

in
 

the
 

tip

Fig.1 Eight
 

types
 

of
 

trichomes
 

commonly
 

found
 

in
 

Solanaceae[7]
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物有着间接防御作用,可作为信号传递给植物来增

强自身的防御能力。

2.1 萜 类

萜类属于最大的次生代谢产物群,目前植物中

已经有超过25
 

000种萜烯参与对细菌、真菌、食草

动物的直接与间接防御[11-12]。根据萜类化学结构

中五碳单元数分为半萜、单萜、倍半帖、二萜、二倍半

萜、三萜和四萜烯[13]。单萜类物质可以有效地抵抗

细菌的侵扰,如柠檬醛、香茅醇、香叶醇、香芹酚和百

里香酚等可以阻止炭疽杆菌的分生孢子萌发,减缓

炭疽病的扩散[14-15]。许多倍半萜类物质具有很好

的虫拒食性。如菊科中除虫菊(Tanacetum
 

ciner-
ariifolium)所含有的除虫菊酯对各类虫有显著的生

物活性[16],黄花蒿(Artemisia
 

annua)腺毛内所含的

青蒿素对寄生虫也有一定的抗性[17]。唇形科火把

花(Colquhounia
 

coccinea
 

var.
 

mollis)的腺毛中发

现的二倍半萜类的火把花烷也能有效抵抗植食性昆

虫和病原真菌的侵扰[18]。

2.2 氨基酸类及苯丙烷类

氨基酸类的苯丙氨酸、色氨酸、酪氨酸都属于芳

香族氨基酸,其中色氨酸是生长素、生物碱、吲哚氨

酸和植物抗毒素的前体,酪氨酸是异喹啉生物碱、甜
菜碱、醌类物质的前体[19-20],苯丙氨酸是苯环型苯

丙烷类通路的前体,对香豆酰辅酶A是苯丙烷类代

谢通路的中间产物,也是苯丙烯、类黄酮等多种物质

的前体[21]。类黄酮是植物中重要的防御物质,它可

以减少紫外线对植物干扰的影响,同时也具有抗虫

抗菌抗病毒作用[22],如携带番茄黄叶卷曲病毒的粉

虱会对全球热带及亚热带地区对番茄造成严重破

坏,而类黄酮含量较高的番茄对粉虱的抗性更强从

而间接降低了番茄黄叶卷曲病毒的传播[23]。

2.3 酰基糖

酰基糖是指葡萄糖、蔗糖的羟基被不同长度、数
量的酰基脂肪链给酯化所生成的酰基糖苷类物

质[24]。它最早在茄科植物中发现,碧冬茄属(Petu-
nia)、烟草属(Nicotiana)、曼陀罗属(Datura)、番茄

属(Solanum)内植物中都曾检测出酰基糖。通常认

为酰基糖是茄科植物特有的防御物质,但也有研究

发现在蔷薇科、石竹科植物中也检测出酰基糖[25]。
酰基糖对于草食性动物有毒性,其毒性强度取决于

糖骨架类型和脂肪链的长度,不同类型酰基糖饲喂

会造成梨蚜虫、烟草蚜虫的死亡率差异。除此之外,
酰基糖还是优异的乳化剂和表面活性剂,能够粘住

节肢动物使其窒息死亡[26]。

2.4 脂肪类衍生物

常见的脂肪类衍生物有茉莉酸、甲基酮等。茉

莉酸是植物体内常见的激素,有研究表明对向日葵

(Helianthus
 

annuus)[27]、番茄[28]、野生薄荷(Men-
tha

 

piperita)[29]施用外源激素茉莉酸甲酯,能增加

植物腺毛密度。甲基酮属挥发性脂肪酸衍生物,最
早在番茄腺毛内检测到。植物常见的中型甲基酮包

括2-庚酮,2-十一烷酮,2-三癸酮,2-壬酮和2-十五

烷酮,甲基酮对棉蚜虫、番茄果虫有致死作用,能够

保护植物免受植食性动物侵害。植物分泌甲基酮的

含量与植物对各种病原体之间的抗性也存在一定的

正相关性。另外一些中型甲基酮(C7-C15)还能增

强植物香气,并在多种植物精油成分中出现[30]。

3 防御物质的合成与调控

3.1 防御物质的合成通路

在植物营养器官中,防御物质通常在腺毛分泌

细胞中合成,再从分泌细胞转运到表皮角质层中储

存[31]。常见防御物质的合成途径包括萜类合成途

径、氨基酸类及苯丙烷类合成途径、酰基糖合成途

径、脂肪衍生物合成途径。

3.1.1 萜类合成途径 萜类化合物的起始合成源

于两个通用的异戊二烯五碳结构单元,即异戊烯基

焦磷酸(isopentenyl
 

pyrophosphate,
 

IPP)和二甲基

烯 丙 基 焦 磷 酸 (dimethylallyl
 

pyrophosphate,
 

DMAPP)。自然界中存在两种不同的代谢串扰途

径去合成IPP与 DMAPP,分别是甲羟戊酸途径

(mevalonate,
 

MVA)和甲基赤藓糖醇磷酸(2-C-
methyl-D-erythritol

 

4-phosphate,
 

MEP)途径。通

常 MVA途径发生在过氧化物酶体、细胞质及内质

网中,而 MEP途径发生在质粒中[32](图2)。最新

研究发现,除了经典的 MVA与 MEP途径外,部分

植物还在细胞质中存在一种异戊烯基磷酸激酶

(isopentenyl
 

phosphate
 

kinase,
 

IPK),其可以将异

戊烯基磷酸(isopentenyl
 

phosphate,
 

IP)与二甲基

烯 丙 基 磷 酸 (dimethylallyl
 

monophosphate,
 

DMAP)酸 化 生 成IPP 与 DMAPP[33-34]。IPP 与

DMAPP最 终 会 在 法 尼 基 焦 磷 酸 合 酶(farnesyl
 

diphosphate
 

synthase,
 

FPPs)或香叶基焦磷酸合酶

(geranyl
 

diphosphate
 

synthase,
 

GPPs)下生成法尼

基焦磷酸(farnesyl
 

diphosphate,
 

FPP)或香叶基焦

磷酸(geranyl
 

diphosphate,
 

GPP)。FPP与GPP是

许多单萜、倍半萜、三萜、固醇、油菜甾醇、聚戊烯醇

合成的必要代谢物[35]。另外萜类物质的合成也需要
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AACT.乙酰乙酰辅酶A硫解酶;HMGS.3-羟基-3-甲基戊二酰辅酶A合成酶;HMGR.3-羟基-3-甲基戊二酰辅酶A还原酶;

MK.甲羟戊酸激酶;PMK.磷酸甲羟戊酸激酶;MDD.甲羟戊酸焦磷酸脱羧酶;IDI.异戊烯基焦磷酸异构酶;IPK.异戊烯基磷酸激酶;

FPPs.法尼基焦磷酸合酶;DXS.1-脱氧-D-木酮糖-5-磷酸合酶;DXR.1-脱氧-D-木酮糖-5-磷酸还原异构酶;MCT.2-C-甲基-D-赤藓

醇-4-磷酸胱氨酰转移酶;CMK.4-(5'-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶;MDS.2-甲基-D-赤藓糖醇-2,4-环焦

 磷酸合酶;HDS.4-羟基-3-甲基丁-2-烯基焦磷酸合成酶;HDR.4-羟基-3-甲基丁-2-烯基焦磷酸还原酶 

图2 植物萜类物质合成途径[38]

AACT.
 

Acetoacetyl-CoA
 

thiolase;
 

HMGS.
 

3-hydroxy-3-methylglutaryl-CoA
 

synthase;
 

HMGR.
 

3-hydroxy-3-methylglutaryl-CoA
 

reductase;
 

MK.
 

Mevalonate
 

kinase;
 

PMK.
 

Phosphomevalonate
 

kinase;
 

MDD.
 

Mevalonate
 

diphosphate
 

decarboxylase;
 

IDI.
 

Isopentenyl
 

diphosphate
 

isomerase;
 

IPK.
 

Isopentenyl
 

phosphate
 

kinase;
 

FPPs.
 

Farnesyl
 

diphosphate
 

synthase;
 

DXS.
 

1-deoxy-D-xylulose
 

5-phosphate
 

synthase;
 

DXR.
 

1-deoxy-D-xylulose
 

5-phosphate
 

reductoisomerase;
 

MCT.
 

2-C-methyl-d-erythritol
 

4-phosphate
 

cytidylyltransferase;
 

CMK.
 

4-(cytidine
 

5'-diphospho)-2-C-methyl-D-erythritol
 

kinase;
 

MDS.
 

2-C-methyl-d-erythritol
 

2,4-cyclodiphosphate
 

synthase;
 

HDS.
 

(E)-4-hydroxy-3-methylbut-2-enyl
 

diphosphate
 

synthase;
 

HDR.
 

(E)-4-hydroxy-3-methylbut-2-enyl
 

diphosphate
 

reductase

Fig.2 Terpenoids
 

biosynthetic
 

pathways
 

in
 

plants[38]

萜烯合酶(terpene
 

synthases,
 

TPSs)的催化。萜烯

合酶能促进萜类结构与种类的多样性,能使直链

(C5n)前体物质的结构变化,产生不同线性或环状

结构的萜烯或萜烯醇[36]。植物 TPSs可以根据保

守的螺旋结构α、βγ分为Ⅰ型、Ⅱ型[12]。在萜烯合

酶反应后,某些萜烯或萜烯醇还会经过甲基化、酰
化、细胞色素P450氧化、脱氢酶氧化等不同类型修

饰反应生成不同代谢产物[37]。
3.1.2 氨基酸类及苯丙烷类合成途径 分支酸是

苯丙氨酸、色氨酸、酪氨酸合成的前体物质,通过糖

酵解、莽草酸途径所产生(图3)。在细胞质体中,分
支酸会经过6个酶促反应生成色氨酸。苯丙氨酸与

酪氨酸的前两步反应都是通过分支酸变位酶将分支

酸转化为预苯酸,后通过预苯酸转氨酶(prephenate
 

aminotransferase,
 

PPA-AT)生成预酪氨酸,再分别

通过相关脱氢酶(arogenate
 

dehydrogenase,
 

ADH)
或相关的脱水酶(arogenate

 

dehydratase,
 

ADT)催

化生成酪氨酸或苯丙氨酸[39]。
苯丙氨酸是苯丙烷类物质的前体,在苯丙烷类

合成途径中存在3个连续的非常保守的酶———苯丙

氨酸解氨酶(phenylalanine
 

ammonia
 

lyase,
 

PAL)
 

、
肉 桂 酸 4-羟 基 化 酶 (cinnamate

 

4-hydroxylase,
 

C4H)、4-香豆酸辅酶 A 连接酶(4-coumarate-CoA
 

ligase,
 

4CL)。苯丙氨酸经过3个酶的连续催化生

成对香豆酰辅酶 A(p-coumaroyl-CoA),对香豆酰

辅酶A也是众多产物的中间代谢物,后通过不同类

型的修饰反应生成最终代谢物[21]。
3.1.3 脂肪类衍生物 脂肪类衍生物主要是指不

饱和脂肪酸由底物乙酰辅酶A通过糖酵解途径、乙
酸途径生成的衍生物,经过系列氧化还原反应、酰化

反应,转化为醛、醇、乙酸酯类等。而外源合成的茉

莉酸甲酯是由亚麻酸经过多个酶促反应生成中间产

物茉莉酸,再通过茉莉酸甲基转移酶甲基化而形

成[40-41]。甲基酮的碳骨架合成也是来源于脂肪酸
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合成途径,在野生多毛番茄(Solanum
 

habrochaites)
中存在2种甲基酮合成酶(methylketone

 

synthase
 

1,
 

MKS1、methylketone
 

synthase
 

2,
 

MKS2),其中

MKS2能催化β酮酰基辅酶 A水解生成不稳定的

β-酮酸进而生成2-甲基酮[42]。

3.1.4 酰基糖合成途径 酰基糖的合成途径也基

于脂肪酸合成途径,但酰基糖的合成途径尚未完全

解析,仍有几个酰基糖代谢关键酶基因未知[43]。在

潘那利野生番茄中酰基糖是2,3,4-3-O-酰基葡萄

糖酯,其结构包括直链脂肪酸(straight-chain
 

fatty
 

acids,
 

SCFAs)以 及 支 链 脂 肪 酸(branched-chain
 

fatty
 

acids,
 

BCFAs)两个部分[44](图4)。BCFAs
来源于其对应支链氨基酸(branched-chain

 

amino
 

acids,
 

BCAAs),而SCFAs推测是通过脂肪酸FAS
(fatty

 

acid
 

synthase,
 

FAS)合酶介导的,具体酰基

糖生物合成可以分为脂肪酰基链的合成、酰基分子

酯化到直链蔗糖或者葡萄糖两个阶段,在第二个阶

段3个属于BAHD类的酰基糖酰基转移酶(acylsu-
crose

 

acyltransferases,
 

ASATs)依次催化酰基化的

过程[45],且可能通过酰基糖呋喃果糖苷酶1
 

(acyl-
sucrose

 

fructofuranosidase
 

1,
 

ASFF1),最终将酰基

蔗糖催化成酰基葡萄糖[46]。在茄科中矮牵牛猎鹰系

CM1.分支酸变位酶;PAL.苯丙氨酸解氨酶;C4H.肉桂酸

4-羟基化酶;
 

4CL.
 

4-香豆酸辅酶A连接酶

图3 植物氨基酸类及苯丙烷类合成途径[39]

CM1.
 

chorismate
 

mutase;
 

PAL.
 

Phenylalanine
 

ammonia
 

lyase;
 

C4H.
 

Cinnamate
 

4-hydroxylase;
 

4CL.
 

4-coumarate
 

CoA
 

ligase

Fig.3 Amino
 

acid
 

and
 

phenylpropane
 

synthesis
 

pathway
 

in
 

plants[39]

列红 白 品 种 (Petunia
 

hybrida
 

‘Falcon
 

Red
 

&
 

White’)和本氏烟草(Nicotiana
 

benthamiana)中酰

基糖SCFAs不是通过脂肪酸FAS合酶途径生成,
而是通过α-酮酸(α-ketoacid

 

elongation,
 

αKAE)延
长途径合成直链[47]。

3.2 防御物质的代谢调控

腺毛防御物质的调控可以分为直接途径和间接

途径。直接途径是改变防御物质合成通路上相关基

因及转录因子的调控从而增减相关产物;间接途径是

改变毛状体的密度与细胞形态来改变物质的含量[48]。

3.2.1 直接调控 转录因子是一种DNA结合蛋

白,可以识别并靶定启动子的特定调控序列来调控

基因 表 达 水 平[49]。近 年 来 发 现 WRKY、MYB、

bHLH、ERF、JRE、bZIP、YABBY类等转录因子调

控萜类的合成[13],其中 MYB类转录因子也调控苯

丙烷途径物质的生成[50]。在腺毛中一些 WRKY、

ERF、bZIP类转录因子能够特异性表达,且不同类

型之间存在互相作用。在黄花蒿中 WRKY类转录

因子AaGSW1与ERF类转录因子AaORA一样都

在腺毛中特异性表达,并且 AaGSW1可以结合到

AaORA 启动子 W-box结合域对其正向调控,同时

AaGSW1也受到 AabZIP1、AaMYC2的直接调控,

AabZIP1、AaMYC2能够调控茉莉酸以及脱落酸生

BCAT.
 

支链氨基酸转氨酶;
 

BCKDH.支链α-酮酸脱氢酶;
 

ACAT(1-3).酰基蔗糖酰基转移酶;ASFF1.酰基蔗糖呋喃果糖苷酶

图4 潘那利番茄中酰基糖代谢通路模型[44]

BCAT.
 

Branched
 

chain
 

aminotransferase;
 

BCKDH.
 

Branched
 

chain
 

alpha-ketoacid;
 

ACAT(1-3).
 

Acylsucrose
 

acyltransferases(1-3)
 

ASFF1.
 

Acylsucrose
 

fructofuranosidase1

Fig.4 Model
 

of
 

acylsugar
 

metabolism
 

pathway
 

in
 

S.pennellii
 [44]
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物的合成[51]。在留兰香(Mentha
 

spicata)中发现

MsYABBY5在腺毛中高表达,RNA干扰 MsYAB-
BY5后会使单萜类物质产量升高,且过量表达 MsY-
ABBY5会使得单萜总量减少了23%至52%[52],说明

MsYABBY5可能是一类负调控因子。

3.2.2 间接调控 可以通过改变细胞形态来调整

不同类型腺毛的比例,从而增加相关物质。在番茄

中发现了一类转录因子SlMYC1,可能与Ⅵ腺毛形

态发育有关,敲掉编码基因SlMYC1会使得Ⅵ型腺

毛密度减少,相关萜类物质产量也减少[53]。同样在

番茄里发现毛状体的发育与B型细胞周期蛋白Sl-
CycB2相关,且该编码基因受到 Wo 的调控,通过

RNA干扰SlCycB2和Wo的表达,可使得番茄I型

腺毛的数量减少[54],而番茄叶片的酰基糖含量也有

可能发生变化。调整腺毛腺毛密度调控是指通过改

变毛状体密度来调节物质产量。毛状体分为腺毛和

非腺毛状体。目前分子层面关于控制腺毛起始相关

基因研究较少,精确调控单一类型的腺毛密度来增

加特定的产物实施是有一定难度的,研究者通常采

取整体调控毛状体密度来增加产物。研究表明施用

外源激素能够增加植物毛状体密度。比如对含有腺

毛的番茄与无腺毛的大豆施用茉莉酸甲酯,发现处

理之后的叶平均毛状体密度分别是未处理的1.6和

2.3倍,在一定范围内毛状体密度的增加幅度随茉

莉酸甲酯的浓度的增加而增加[55]。施用茉莉酸甲

酯,也会使得番茄Ⅵ型腺毛密度增高,Ⅵ型毛状体相

关防御物质也有所增加[56]。

4 防御物质的转运

植物中的次生代谢产物,通常会从分泌细胞跨

膜运输到胞内外特定储存空间或释放于细胞表皮外

层,其合成过程也需穿过不同亚细胞器,如细胞质

体、细胞质溶胶、线粒体、过氧化物酶体、高尔基体

等[4]。在长距离运输过程中,转运机制帮助中间产

物运输到加工部位,或帮助最终产物定点储存。众

多次生代谢产物的跨膜运输依靠简单扩散,囊泡运

输和转运蛋白介导的转运3种转运机制进行。简单

扩散是根据膜内外浓度差,物质从高浓度到低浓度

进行扩散。囊泡运输是指运往相同路径的溶质颗粒

被包裹于囊泡内,囊泡膜与质膜融合将分泌物质排

出于细胞外通道的过程[57]。转运蛋白介导的转运

是指位于液泡膜、质膜上的蛋白对小分子有机物进

行高度筛选并且严格调控物质运输的活动[58]。目

前根据编码转运蛋白所属的基因家族可以将转运蛋

白划分为4类,ABC(ATP-binding
 

cassette)、NRT
(nitrate-peptide

 

transporte)、MATE(multidrug
 

and
 

toxic
 

compound
 

extrusion)、PUP
 

(purine
 

per-
mease)[59]。3种转运机制在生物碱的合成与储存

中有着重要的作用。生物碱是具有不同化学结构的

小分子含氮化合物,是植物次生代谢过程中的产物,
并且参与植物对食草动物、微生物的化学防御[60],
根据生物碱的化学结构以及前体物质可以划分为以

下几个亚组,吲哚、异喹啉、嘌呤、吡啶、喹唑啉、四氢

异喹啉生物碱等[61]。长春花所含的长春花碱属于

吲哚生物碱,能够有效地避免植食性动物的侵害,

CrTP2属于ABC转运蛋白中的质膜定位蛋白,能
将长春花碱转运到叶表面从而增强防御[62]。

植物腺毛储藏腔内的次生代谢防御产物中含有

一些低分子量(100~200
 

Da)的亲脂性化合物,这些

化合物具有一定的挥发性,这些挥发性有机物在环

境温度下具有较高的气压,可以从植物体内排放到

外界环境。通常认为在细胞内,挥发性有机物通过

被动运输或通过直接扩散形式进行跨膜运输,但无

论是被动运输还是直接扩散都需要代谢产物在膜内

高浓度累积,形成膜内外浓度梯度差。Joshua等通

过模型计算推测橙花叔醇、甲基苯甲酸乙酯在金鱼

草细胞内需要达到50~120
 

mmol/L才能进行顺浓

度差排放,而高浓度物质是对细胞有毒害作用,因此

推断代谢产物跨膜运输还存在主动运输的方式[31],
而主动运输需要能量的供给同时也需要转运蛋白的

参与。在腺毛中参与防御物质运输的蛋白有脂质转

运蛋白(LTPs,lipid
 

transfer
 

proteins)、ABC转运蛋

白等,近期发现糖转运蛋白可能也间接参与相关物

质的运输[63]。

4.1 脂质转运蛋白

脂质在细胞质水溶液内的溶解性较差,因此脂

质需要一种在细胞内移动的转运系统[64]。研究发

现一类富含可溶性半胱氨酸的蛋白质(脂质转运蛋

白),它能非特异性结合疏水性分子。LTPs分子量

通常低于10
 

kD,
 

Ⅰ型和Ⅱ型LTP的分子量分别约

为9和7
 

kD,
 

Ⅰ型约含有90个氨基酸,Ⅱ型含有大

约
 

70个氨基酸,并由一些大型植物基因家族编

码[65]。LTPs分子结构具有4~5个α螺旋,这些螺

旋通过4个稳定的二硫键交联,形成1个中央疏水

腔[66]。LTPs被证明与病原体防御、信号传导、细胞

壁松弛有关[67]。另外LTPs可以将表皮蜡物质转

运到细胞外堆积到角质层[68],在烟草(Nicotiana
 

tabacum)中过表达NtLTP1使得蜡物质分泌增多,
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且植株对蚜虫的抗性有所增强[69]。另外将烟草

NtLTP1转入橙色薄荷(Mentha
 

piperita
 

f.
 

citra-
ta)中过表达,使得薄荷头状腺毛储藏腔内的单萜类

物质乙酸芳樟酯增多[70]。而在黄花蒿腺毛中,LTP
的转录物占到总表达序列的10%,过表达AaLTP3
或AaLTP4,青蒿中倍半萜类物质青蒿素、青蒿素

B、二氢青蒿酸、青蒿酸含量均有所增加[71]。

4.2 ABC转运蛋白

ABC转运蛋白通过利用水解ATP释放的能量

来转运相关产物[72]。在矮牵牛中发现ABC亚家族

的 ABCG转运蛋白PhABCG1受到 ODORANT1
转录因子的调控,研究表明PhABCG1可能与苯丙

烷类挥发性物质转运相关[73]。ABC家族中也存在

非挥发性防御物质运输的转运蛋白,在面对生物和

非生物胁迫的压力时,PDR多重耐药性转运蛋白能

够转运激素起到防御作用。烟草中的 NtPDR1转

运蛋白也参与腺毛中二萜类抗菌物质西松烯、香紫

苏醇的分泌,并且发现NtPDR1也可能参与半萜类

物质辣椒素的转运[74]。人参(Panax
 

ginseng)中的

PgPDR3转运蛋白参与三萜类具有抗菌物质人参皂

苷的转运[75]。ABC转运蛋白也间接参与对微生物

的防御,当拟南芥受到侵害,其体内2种应激激素茉

莉酸甲酯与水杨酸甲酯的表达上调,ABCG类蛋白

受到 两 种 激 素 正 向 调 控,转 录 水 平 也 出 现 上 升

趋势[76]。

4.3 糖转运蛋白

MFS、SSF和SWEET这3个家族的转运蛋白

常在植物与人体内转运糖类物质[77]。MFS是一个

超家族,包括74个不同的家族,MFS转运物包括单

糖、寡糖、核苷酸、辅酶因子等,其主要利用共转运离

子电化学梯度或者转运物的浓度进行物质运输[78]。
在野生番茄的酰基糖代谢中发现类似ERD(属于

MFS超家族的脱水糖转运蛋白)的糖转运蛋白出现

差异表达,推测ERD糖转运蛋白可能参与酰基糖代

谢[44]。在拟南芥(Arabidopsis
 

thaliana)中发现磷

酸化的STP13糖转运蛋白可以增强糖摄入量,限制

糖外排量,从而减少细菌能源摄入来有效抗菌[79]。
另外SWEETs蛋白可以协助生物体内己糖或

者二糖进行跨膜运输[80],它在植物器官、细胞、亚细

胞间转运糖类物质,能够协助植物花蜜在韧皮部长

距离运输[81-82]。但有研究表明植物SWEETs转运

蛋白在促进糖外排过程也容易导致病菌感染细

胞[77]。在水稻(Oryza
 

sativa)中,细菌释放的效应

物会结合水稻中SWEET11、SWEET14蛋白的启

动子,这些效应物会诱导不同SWEET基因表达,所
以也有推测糖外排功能是病原体为了获取营养而采

取的措施[83]。

5 讨 论

近年来对于腺毛的研究已成为植物防御研究的

热点,植物分泌的防御物质在其自身生长发育以及

抵御生物与非生物的胁迫中起到重要作用。人们试

图通过提高防御物质产量来增强植物的抗性,或利

用植物特定的器官与组织作为“化学工厂”生产化工

产品。目前可以通过调控与细胞形态相关的基因或

改变腺毛的比例来改变物质产量。也可以通过喷施

外源之激素增加整体毛状体密度提高物质的产量。
腺毛的结构非常精细且高度组织化,它由一些复杂

的分子调控,而目前缺乏腺毛发育的相关研究。从

分子层面研究腺毛的发育主要难题是如何将细小的

腺毛进行分离。腺毛分离的研究从20世纪80年代

中期开始,最早通过机械磨损等方法获取了野生薄

荷、向日葵的腺毛。如今,随着技术不断更新,激光

显微切割已被应用于腺毛细胞的分离[1]。分离的腺

毛细胞的RNA可以用作腺毛转录组数据的测量,
检测差异表达的序列,有助于发掘与腺毛形态发育

相关的特异性基因。
实现腺毛防御物质产业化生产,首先需要充分

了解其代谢途径,这样才能有效的提高产量。目前

大多研究集中在腺毛防御物质的合成上,但物质合

成场所不一定是最终储存或释放场所。物质合成、
调控、转运三个环节都有可能导致最终产物发生质

或量的改变,而物质的转运相比合成与调控过程更

容易被人们忽略。除此之外,在利用植物腺毛进行

生产时,还需考虑植物自身防御机制的影响。在植

物细胞内,一些防御物质高浓度积累对细胞是有害

的,如果这类物质没有及时转运到固定场所,很可能

会被细胞的防御机制降解或重吸收,这或许可以解

释一些研究在过量表达合成、调控基因后,目标产物

产量并未明显提高的现象。因此保障防御物质代谢

途径的高效运行将是此类物质产业化应用的重要研

究方向。
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