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Abstract: MYB transcription factors are widely involved in plant growth and development, and also play an
important role in regulating lignin synthesis. In this study, in order to explore the role of MYB transcrip-
tion factor in maize development, the differentially expressed MYB transcription factor genes were
screened and analyzed based on the transcriptome sequencing data of maize stems,and the ZmMYB308
gene was cloned by RT-PCR method. The results showed that: (1) a total of 14 differentially expressed
MYB transcription factor genes were detected in different periods, among which 10 were down-regulated

and 4 were up-regulated. (2) ZmMYB308 contains a 747 bp open reading {frame, which encodes a 248 ami-
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no acids polypeptide with a protein molecular weight of about 27. 01 kD and a theoretical isoelectric point
of 9.17. Blast results showed that ZmMYB308 was closely related to SIMYB308 of foxtail millet with 94 %
similarity. (3) The results of real time quantitative PCR analysis showed that ZmMYB308 was significant-

ly differentially expressed in different development periods and tissues. The expression of the ZmMYB308

first increased gradually and then decreased with the development of maize stem, and reached the peak at

the silking stage. Meanwhile, ZmMYB308 was highly expressed in maize stems and roots which had lignin

content. The results indicated that ZmMYB308 might play an important role in the regulation of stem

growth and development. This work lays the foundation for further exploring the molecular regulatory

mechanism of lignin synthesis in maize.
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Table 1

Candidate gene and primer sequences used for qRT-PCR

N ZFX Gene name

1IEM 5% Forward primer

JZ I8 51 #) Reverse primer

MYB4
MYB126
MYB59
MYB39
MYB308

B-Actin

GTGCTGCGAGAAGATGGG
AGCAGCAGCAGGAGGAAGA
AGCGTCGTCCGTGACTACCA
AGAGCGGGCTGAAGAAAGGG
TTCTTCCGTTTCCGTCTCCC

CCCTGAGGTTCTATTCCAGCC

CGTGGAGGCTGATGATGG
CCGTGACAGCATCGGAAGT
GCCGCGATGTCGTTCCA
CGGATGTGCGTGTTCCAGTAG
CGCTGGTCCTCTTCCTTGGT

CCAGGGAACATAGTGGAGCC
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Table 2 The information of differentially expressed MYB transcription factor genes
. X 4 o . L (FEIZ Y vs 24 . N
B4 3 1D S T Y S L o D TS B S
Gene name Gene 1D olecular pl Chr Grain filling stage vs Type
weight/kD Silking stage

Putative MYB GRMZM5G887276 46. 20 8.73 1 —2.14 1R-MYB
MYB4 GRMZM2G048295 31.78 5.42 2 —2.50 R2R3-MYB
MYB308 GRMZM2G405094 27.01 9.17 8 —2.98 R2R3-MYB
MYB30 GRMZM2G171781 47.01 5.96 10 —1.86 R2R3-MYB
IRLESH MYB46 GRMZM2G150841 36. 94 6.55 7 —3.18 R2R3-MYB

Down-regulated

expression MYB126 GRMZM2G001223 35.58 8.43 5 —7.84 R2R3-MYB
MYBS85 GRMZM2G077789 27.93 9.15 6 —2.99 R2R3-MYB
MYB-IF35 GRMZM2G051256 38.58 4.58 3 —4.65 R2R3-MYB
MYB15 Zm00001d025864 30. 26 6. 46 10 —4.128 R2R3-MYB
MYB-PHL6 Zm00001d014701 50. 1 6.04 ) —2.67 R2R3-MYB

MYB59 GRMZM2G305856 27.93 7.05 6 1.32 1R-MYB
bk MYB22 GRMZM2G096358 39.22 6 8 1.53 R2R3-MYB

Up-regulated
expression MYB39 GRMZM2G031323 40. 89 6.5 7 2.45 R2R3-MYB
MYB2 GRMZM2G009060 40. 23 7 1 1.49 R2R3-MYB
M 1

M 2% Grain filling stage

a

@ M- 22 1 Silking stage
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Fig. 1 Relative expression of some MYB genes

in the silking stage and grain filling stage
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Fig. 4 Conserved domain analysis of ZmMYB308 protein
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Fig. 6 The expression pattern of ZmMYB308

in different development stages
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in different tissues
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