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Effect of Foliar Spraying Melatonin on Photosynthesis and Antioxidant

System of Maize Leaves under Drought Stress and Rewatering
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(1 College of Agronomy, Northwest A&TF University, Yangling, Shaanxi 712100, China; 2 Baoji Dixing Agricultural
Technology Co. , Ltd. , Mei County, Shaanxi 723000, China)

Abstract: In the present study, we investigated the physiological mechanism of foliar spraying of exoge-
nous melatonin (MT) on maize under drought stress and rewatering. The maize cultivar ‘Shaanke No. 9’
applied with 100 umol » L' melatonin was used as the experimental materials, the changes of leaf relative
water content (RWC), leaf area, aboveground biomass, photosynthetic characteristics and antioxidant en-

zyme activities were determined under severe drought stress and rewatering. The results suggested that:
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(1) foliar application of exogenous melatonin could alleviate the maize growth inhibited by drought stress.
It also improved the effective quantum yield of PSIl and PS T under drought stress [YCI), YC(T )], de-
creased the PS | receptor side limitation [ YCNA)] and donor side limitation [ Y(ND) | of leaf photosyn-
thetic apparatus after drought stress. (2) The melatonin-treated plants exhibited lower malondialdehyde
(MDA) content and hydrogen peroxide (H,,) content. The activities of superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were enhanced and the ex-
pression of antioxidant enzymes related genes were upregulated by melatonin treatment under drought
stress. (3) After rehydration, compared with untreated maize, higher recovery rates of parameters were
obverted in exogenous melatonin-treated maize leaves. Consequently, foliar spraying of melatonin effec-
tively alleviated the damage to photosynthetic apparatus of maize leaves under drought stress, enhanced
the activities of antioxidant enzymes and the expression of related genes, significantly reduced the level of
membrane lipid peroxidation, and substantially promoted the recovery of physiological functions of maize
leaves after rehydration. In short, exogenous melatonin can improve the photosynthetic efficiency and an-

tioxidant capacity of maize leaves under drought and recovery water, eventually promoting the plant

growth to adapt to the stress environments.
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Fig. 1

Effect of exogenous MT on leaf water content, leafl area and aboveground biomass of maize

under drought and rewatering
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Fig. 2 Effect of exogenous MT on light energy distribution in PS]l and PS] of maize leaves

under drought and rewatering
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Fig. 3 Effect of exogenous MT on antioxidant enzyme activities of maize leaves under drought and rewatering
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leaves under drought and rewatering
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