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Light-induced Stomatal Dynamics in Typical Trees of Different
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Abstract: The rapidity of stomatal response to dynamic irradiance is one of important factors affecting leaf
water use efficiency. In order to explore the physiological mechanism of water use efficiency variation in
trees from different succession stages, we studied the light-induced stomatal conductance (g.) dynamics
and their relation with stomatal traits and leaf long-term water use efficiency in seed-planted seedlings of
three species (early succession stage species: Populus davidiana and Betula platyphylla, and late succes-
sion species Quercus liaotungensis) native to Huanglong Mountain forest region using a pot experiment.,
Results showed that, (1) time constant during stomatal opening (K;) in P. davidiana and B.

platyphylla was shorter than that in Q. liaotungensis, but time constant during stomatal closing (K ;) in
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P. davidiana and B. platyphylla was longer than that in Q. liaotungensis, reflecting that stomata open
faster in P. davidiana and B. platyphylla, and close faster in Q. liaotungensis. P. davidiana and B.
platyphylla had larger g, response amplitude than Q. liaotungensis during stomatal opening, and P. da-
vidiana had larger g, response amplitude than Q. liaotungensis during stomatal closing. (2) Q. liaotun-
gensis had the largest stomatal density, smallest stomatal size and biggest stomatal index among three spe-
cies, stomatal traits in Q. [liaotungensis could not explain its slower stomatal opening response. (3) P.
davidiana and B. platyphylla had higher photosynthetic rate, maximum carboxylation velocity, maxi-
mum electron transport rate, long-term water use efficiency indicated by leaf §"°C exhibited as P. davidi-
ana > B. platyphylla > Q. liaotungensis. The results show that higher water use efficiency in P. da-
vidiana and B. platyphylla was partly attributed to their rapid stomatal opening, while rapid stomatal
closing in the late succession species Q. liaotungensis did not enhance its water use efficiency, and the
long-term water use efficiency is lower than that of P. davidiana and B. platyphylla, which may be re-
lated to the slow stomatal opening of Q. liaotungensis limiting its photosynthetic rate.
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Fig. 1 Light-induced stomatal conductance dynamics

in three typical species
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Table 1 Stomata anatomical traits in leaves of three species
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A ER Q. liaotungensis 578+ 36a 17.84-+0. 06¢ 11.46+0. 21b 53.300.47b 19.2340. 26a
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Table 2 Leaf photosynthetic capacity and §°C of three species
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