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Application Status and Prospect of CRISPR/Cas9
Genome Editing Technology in Tomato
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Abstract; CRISPR/Cas9 technology is an editing tool that can rapidly modify specific DNA of genomic tar-
gets. This paper reviews the research progress of CRISPR/Cas9 technology in improving tomato agronom-
ic traits and improving biotic and abiotic stress resistance at home and abroad in recent years, and focuses
on some problems faced by CRISPR/Cas9, so as to provide reference for the application of CRISPR/Cas9
gene editing technology in germplasm innovation and gene function research of tomato.
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regularly interspaced short palindromic repeats/
CRISPR associated proteins, CRISPR/Cas)., 5
CRISPR/Cas # b ,ZFNs fil TALENSs 7& 4w 5 50% |
e M UAS B S AR E B AR H O RE b Ik 1 Bk

CRISPR/Cas $ A& 2013 4EJF 4 v A T 48 4 3
PRI ZH S 8 1 AT X A 4 2 DR A KR E DNA
790 5E 1] G % 0 20 K, B Science 243V KR
FRMEZ —" . Hodh R ol T2 1 & CRISPR/
Cas9 R4, HRIC &K EXK NEFEZFEY
H A

K (Solanum lycopersicum) & EH M 15 F
I F BB S 2 — o AR i A R s AL TR L H
IR BAL F AL HR . A 2014 4F CRISPR/Cas9
TN 2 i B DA g R L A B P T BE AU S A A
59 VR B U AR BT K R R R g R R
RS () AR SR BR ] 1 o — 2 ke . AR Lidof 4
i JLAE CRISPR/Cas9 $ A 76 % jifi Hh 9 57 T SR
FEF V82 AR AE T il v W P B T R T Il F) [

1 CRISPR # AR a4

JEAESR , CRISPR/ Cas9 Kk PH 4 4 2 AR BT 12
b T 22 b A 0 A 1 R DR 4 R DA K B (R D g
Al 5 A0 2 S A W) B R AT RLORE, M 1987
ARTERR M B W2 W W] TG 5] b & B CRISPR ¥ 4
SR 2 R W PR N R B &K CRISPR/ Cas
BEDH R PR Y T g H AR SR . ARl Cas 5
PRI F) 5 a0 ) BB 22 8] 9 AN [] L CRISPR/Cas & 4Gt 1
SRS REFEZMEAN T VIRV R
B85 R A B — A RO AT g RO RY 1T LV
VIZ CRISPR/Cas & 4" . H i N Bl iz i
JEk | I A CRISPR/Cas9 R4, R % £ % i
crRNA(CRISPR RNA) 5 tracrRNA (trans-activa-
ting crRNA) 25 & J5 TB B AU sk — 2 25 ) £ 17 Cas9
A 5, LR B 1 O % 2 F1 (ribonucleo-
proteins, RNPs) & & & 31 i1 5] PAM (protospacer
adjacent motif) X, fifi J5 Cas9 & 1% # H DNA #
i PN VD B4 35 M L R AT DNA XU A B ) o ot 7= A
DSB fili % DNA 2 Bl . CRISPR/Cas9 % A 21
G BB AR N H A% O 2R Cas9/sgRNA K ik 2
TR K 3R T 32 U 40 I 0T & g AR Y T
TP Cas9 B IR 2 35S JA 3l 7 s 4 4R 5+
PEJR 3 ¥ 5550 )3 3 T 9K 8, 1 sgRNA — il R &
fitg 11 %% 5% 19 U6 Ja 8 ¥ 3K 3 , 2 848 5 g 4 — i
iT R sgRNA 7 12 5 A1 R kb 63k L B

T8 3 AT TR A T AL AR AT T T R TR S T AR
ANZ A

2013 4, Science Z8EARIE T CRISPR/Cas9 7£
INEREE Wb i 1 Y B4R Nature Biotechnolo-
gy ZEHIE T AR KR AR R WA TGO e UL R ST
oA PR G AR AL IR 20014 AR RO TR
AL gi4E . HAT, CRISPR/Cas9 By I 32 B2 48
RTE A ) AR AR W 3 o 0 DL R P R B RS D I
188 3 2 8 G B P 9] A7 7 A TE RIS 6 R TR R AR AR
HRZN T R AR LR

2 CRISPR/Cas9 & 4t 7 % i H 1
FHERR

CRISPR/Cas9 $ AR it JLAE 78 % A b ny L &
B AR B R P P i R T RE A 5, K 1
HRF 26 Tk = T N
2.1 CRISPR/Cas9 EEMREUERBRPHIEA
RN

P A% 5L & BT AL 2 O 1 I 1) FURS 448
BRI T A5 R, B2 S5 A — AT EM
AN EAEIR, 1 CRISPR/Cas9 $% A fig % P 8 K i b
B R T 45 dl 28 45 007 5 108 R SRV IR L R
SE R A I £ B 5T N B3 RE 8 R CRISPR/Cas9
AR E SRR RRIES ERET RERE
Vi 2N N 2B o 1 e T D A S N
U, T AR R — P ATE 50 3SR B 50 kR S Y
B MR o R LA AR P AR R B A
S M E .
2.1.1 EAEEKRES 0RO AR TR S
G ERH , Brooks 25 F| F CRISPR/Cas9 4% A&
AN SIAGOT S, S8t B K A AR, I &
LIS e % Fa 8 8t A% . B IR UEW] T CRISPR/Cas9
REAET M TR ARIIRE . R RIEWEE R
EINIY = = I 7 N S NS TN = I - 5 R U S (=10
CRISPR/Cas9 4’8 o~ % % 5 5 5% 3 0y 7 37 B+
PROCERA Rt AL R AR, A 32 3k4% T, AR
FEAR S 2% A 176 1 30 26 B0 1 87 A6 AR 4 5 F 22 [) )
e B R AR B R B R Al AT
Fe A FIREACRR B A IR, B 8 5 28 3k T 6 Cas9
P A BB AL TR AR AR, o T AR R B AL S A i B
AT e,
2.1.2 BREIMR RIMENFMHMETHE.
O IR B R A R B4 R aR R SR T
AR FE A | SRS o B % 0 P TR R X 22 B AU R S A
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Table 1 Application of CRISPR/Cas9 in tomato
BRsE i A Wi 5% 5k
direction Target gene Application Reference
SIAGO7 AR A Changes of leaf type [7]
PROCERA AR H Plant dwarfing [17]
RIN FiE K AR B ] Extending shelf life [18-19]
RING2 FERK AR T ) Extending shelf life [20]
ALC FE K AR B Extending shelf life [21]
SIORRM 4 FERK AR BT Extending shelf life [22]
SINAM1 SEK AR Extending shelf life [23]
SIEZ?2 FE KA 5 Extending shelf life [24-25]
SIINVINH1, SIVPES P i sz n] Y5 P B & i Increasing soluble sugar content of fruit [26]
SIRCM 1 v S Increasing fruit traits [27]
SGR1,LCY-E,BLC,LCY-B1,LCY-B2 2R %ML K & & Increasing lycopene content [28]
SIMYB12 WL R 2 Pink fruit [29-30]
E&&ﬁ‘”‘ PSY1 (3 9 Yellow fruit [31]
Imp“’gfcmmt CRTISO 18 5 952 Orange fruit [32]
agritiziltt:ral SICLE3, SICLV3 WAL Y .3 3% . T 58 Inflorescences, branches, ovary increased [33]
SIWOXS8, SIWOX9 Hr A6 7 25/ Discovery of new inflorescence types [34]
E’;ﬁ??:glg/l\b(glABAisz’ GABA-TP3, PFTIE M SR EF Regulation of flower, leaf and fruit development [11]
SIMPK 20 P ALK &K B Pollen development [35]
miR164a, miR164b, miR164d P AR KT ME 92 IR Regulation of growth and fruit traits [36]
SISTR1 1A EH & Creation of male sterile line [37]
SIMS10% HEPEA T & Creation of male sterile line [38]
GGP P48 & F Regulation of pollen development [39]
SIAGL6 i 45 52 Creation of parthenocarpy [40-41]
SIIAA9 HiMEZESE Creation of parthenocarpy [42]
SIER ,SP5G,SP B F# T Al i Fh Creation of urban agriculture varieties [43]
SP,OVATE,FW2. 2, CycB. MULTI- bR R A, 48 5 2R 92 $ht Fl 3 57 4t ff Change plant shape and [44]
FLORA, FASCIATED fruit type, increase fruit quantity and nutritional value
SIMAPK 3 B E PR Improving drought resistance [46]
SINPR1 P S Improving drought resistance [47]
SIBZR1 R E PR Improving drought resistance [49]
SILBD40 PR P Improving drought resistance [50]
GID1 PP S Improving drought resistance [51]
e P
Improving SICBF1 P EPrIENE: Improving cold resistance [52]
re:;§i§2ce SISBPASE =P ZE M Improving cold resistance [53]
SIHyPRP1 PR Improving salt resistance [54]
SIHAK 20 PR Improving salt resistance [55]
SIMAX 1 P E PSR BE /1 Improving herbicide resistance [56]
SIGRXS14, SIGRXS15, SIGRXS16, e Y Wia 68 71 Enhancing capacity to resist abiotic stresses [57]

SIGRXS17
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%232 1 Continued Table 1

BR5E 7 AL i 5% ik
l(}csca_rch Target gene Application Reference
irection
SiMlo B E AP Improving powdery mildew resistance [58-59]
SIPMR4 HLH 9 Improving powdery mildew resistance [60]
miR482b, miR482¢ YU 9% Improving Phytophthora infestans resistance [61]
SIMYBS?2 YU Improving Phytophthora infestans resistance [62-63]
Sloyc08g 075770 PiAE 29 Improving Fusarium wilt resistance [64]
SIMYC2 YUK F R Improving Botrytis cinerea resistance [65]
PL YUK E 9% Improving Botrytis cinerea resistance [66]
TYLCV P i ¥ AL B % Improving TYLCV resistance [67]
ﬁ%m'iiﬁg TYLCV Rep, CP YU A F AL 1T Improving TYLCV resistance [68]
redsll:iaa:ﬁ:e TYLCV IR, CP Hi % i % Ak 55 Improving TYLCV resistance [69]
SlPelo P 0 B AL B 9% Improving TYLCV resistance [59]
SIDCL2b P A ALK T Improving ToMV resistance [71]

SIDCL2a, SIDCL2b

YD 2 X 58 S B AL M 3 Improving PVX and TMV resistance [72]

SIJAZ?2 U4 3 PR BE 50 Improving Bacterial speck resistant [73]
SIPUB24 YU B PEIE IS Improving Bacterial spot resistance [74]
Rx4 YU A MK Improving Bacterial spot resistance [75-76]
SIDMR 6-1 R Z \EHUKAE 1 Improving multiple disease resistance [77-78]
ACER1la, ACET1b Y Z \HUW AE J Improving multiple disease resistance [79]

CRISPR/Cas9 F K 2H i B 7 A 9 b FH T 8 52
WA B A S ZE B T fiE, W RIN (ripening inhibi-
tor)"¥ 1 RING 2" | ALC (alcobaca)™ . ORRM4

(organelle RNA recognition motif-containing 4)"*

PABe NAMIY o 28 720 1R SR 92 8 38 L3, 3G B
B BRABI A (1% e 307 T D o o A GRE AR . A ARG )
IR SR SR E PR S T BE T & T 2R S 57 1 1Y)
CRISPR/Cas9 R4, % RS L, PPC2 BN )5 3+
UKF) Cas9 FEH KL, IF 4G GFP Kl & 4e. i
RGN Y KB Z R W) EZ2 (zeste) 5
PR FEAT G 0 o0k A 2 00 2R S P Y T REHEAT IR ST L K
I 3] SR ST B AR A BN TR SR S
St 5 00 P AT 1 L O B AR S AR DG TR Dy e F Y R
TP T

A T R O R S B P AR A —
M, INVINH1 (inhibitor of the acid invertase
gene) B PR S 4 410 7 40 i BE 5% 1L G % 44 SIVPES
(vacuolar processing enzyme) 1 [a] & 37 4 i) FH &,
PAM A RS2 n AL R . CRISPR/Cas9 i # 1
IE SIINVINH1 #1 SIVPES Hifg, 45 & W, ik
SIINVINH1 #1 SIVPES BLI 78 U, W& 75 Uk i ik
— AR R AR I T AR R RN

eV oAy 48 1 72 001 502 510 o I AR S AR 40 . ik
Ab i 5 2R 3G N 6. 9 38 I 3 58O A 1 4
YIRE I S RAUR SE B (6, Liu %57 458 T — A0t
LRI R, KSR SIRCM 1 (reduced chlo-
rophyll mutant 1) 3 P 7 S 2, 1% 5 9 o B &R 2R
SEAE SR R B BT, Sy g R S R A T —
ANHTIELB  F AL R S R T A R S B ) T A
% ,SGR1 (stay-greenl) . LCY-E (lycopene E-cycla-
se) . BLC (beta-lycopene cyclase), LCY-B1 (lyco-
pene B-cyclasel) \LCY-B2 & HFMA R EHZ+H
M oCHE 3 A, &3t 6 4 sgRNA Jf Fl Fl CRISPR/
Cas9 RGEIATmE bR, Horp sgrl 58 A8 (R 1) 35 i 21
ROy 5.1 1%, 2 8 R AR A W) 72 2 Y
YRR A DR E AL R TR SE
F b S5 A S B I A

BE A NATTAE 5 K P 1 3 L T 9 SR ()
SRABEZ 42 w5 H 2 Al B 2 v T 2 A R U
il B2 1 A% /K B (naringenin chalcone, NarCh) it 2% 1
BT i AR S B B A, X NarCh A& A 56 3% (A
SIMYB12(myeloblastosis 12) #4174 4515 3] 55 21 5=
SRR, A R I ) 58 AR AR T R AR R R
S it BT 1Y A8 A [A] B ST T T CRISPR/Cas9 %
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GER R R AR B R R G, N H JE 38 G g
MR AR Z PR R T — R S AR
& Ih 2L 22 45 W (phytoene synthase, PSY) 125 &
N % S48 (carotenoid isomerase, CRITOSO) % 5
KIS MR G ER, FIH CRISPR/Cas9 43 %l @
BRer RFA ) PSY1 Ml CRTISO, 345 7 # (0 g
0 R S ZEAR R

2.1.3 ATEKEE FHaidh LS8 E L
R E M 2L 5 T 40 i B 2 . CLV/WUS (clavata/
wuscheD) i 42 18 5 25 vty 43 A= 4 20 1 1% 18 #1434k,
CLV3 @ &L i WUS ) 25 35 FR i 1 20 it 34 58 , Si-
CLE9(clavata 3/embryo)i#i i 52w SICLV3 %+ 44
14 (/Y PR ok e T i 25, i ] CRISPR/
Cas9 i SICLE9 #l SICLV3 % B XL 58 725 {4 ¢ 9
M R B S B £, I R SICLEY Fl
SICLV3 Z [a] /) & 8l #b £ 2% W2,
DY HE— W IE WUS M 563k R A & 3 vh 5 8 47 3
g, Fl FH CRISPR/Cas9 il i K & ff bk SIWOX8
(wuschel-related homeobox 8) fl SIWOX9 )& 3+
FNFEHF B RARR R T W E K EZ T rm
M) Z R0 R R B TR AR R AL, -2 T R (-
aminobutyric acid, GABA) ) & 5 & I, &
GABA Uiy 5 A B #AT mbe, R 3 n £
ANGAS R G YRR W25 B GABA F &, 90 4l
.t REERAEE . WUE T GABAELRE T
e M T 2R ARG Y, A 2 MR
15 A2 I B (mitogen-activated proteins kinases,
MAPK) ZEAT P K B H M EL R LIES
FEAVE M AR & BB D REE R
FIH CRISPR/Cas9 #MIIE# bk SIMPK 20, & 8 5 745
TRAE R A AE B I Al #R 98 T SIMPK 20 & [ 7E
R & B /R Y . MIR (MICRORNA)
Fe R #E 57 5 0 0 7= W /N 4% B 4% TR (MlicroRN As,
miRNAs) AEHWEH) Z HEEY AT AW ELE
YW 8 45 A= W 5t B, CRISPR/Cas9 43 91 4 %5
miR164a, miR164b fl miR164 d, %3 miR164a 5
M SR 552 /N B A5 IR TT mi R 1640 REAE 4k 45 18 2F
E#EE IHERIERKIEE P M miR164a K /4ETT
R R T miR164 1 &K & MR SRR iy
PERE,

2.1.4 HEELFEREMELRMET FTiim
DL i H 2 5 i Fp s K AN 1 01 AR E &R
() B i BB 85 15 48 3K FB 4 WA, TR e 4 R A 28 Fh - 4l
. Du %57 5550 I Wbk e 35 4 3L SISTR1 A

Hendelman

T HEYEAE R IR A SR T T-DNA, [F] 1}
BIH o 2 BB X B R R N TR T
CRISPR/Cas9 9% jili 4 2 i b R 4. dw it F A1 H
BAAE ] CRISPR/Cas9 £ A $ [6] & £ 5 K MS10™
(male sterile) I H%E 81 () bR ic & A A& T HA 4t
THREARICEC T IR 2 BRI EYEAT R AIH
AT & Aeg i i ml A bR 0 78 B 0 X e A B
P o BV HT T 2% 52 i 7 5 BB A8 A w4 B2 A 58, 4
8l I CRISPR/Cas9 1EQ il F i eV A T R S5
FeaZ P R L I IR R & B, GDP-1- L
B RR fL Bl (GDP-1-galactose phosphorylase, GGP)
JE P BRI R 75 B, CRISPR/Cas9 S GGP %875
SEAERAC S B S 20— 2D T 5T R WA R S
UK MR & e 40 AL RS 0 W IEEAR T RV E
TR R

BAVESS SR TC T Bk 1 5 HLAE B T TR 5L
HE f% 3kt fi A6 4 1% ) X AR SRR, AGL6 (aga-
mous-like6) J& K 9% UE B 5 2 Jih oL M 45 LA K,
CRISPR/Cas9 #i B AGL6 j= A4 T 5 9 it i 5 MR
R B2 5 W ) BV 45 SR BE B AIE T AGL 6 T 7 il
() B AL LS S RE 1 OFHRIE XY SIAGL 6 A 5 1 B4
ZEITHLHI AT T WRABETE Y . U, Aua /TAA
(auxin/indole-3-acetic acid) # K F SIIAA9 B F
VA T 1 B VE 45 52, CRISPR/ Cas9 i bR 3K 45 14 5
PEZ, SEGEAR fRs 1 2R S T i R AL, WF 5T R i
R REUE R R =N — AR, I PR ] T i A
T
2.1.5 ZHERERMMIEET CRISPR/Cas9 figt
— UM g B R o AR KO L M E SR DT Y
LA A A6 T i 2 AR . Kwon %9 R
F CRISPR/Cas9 [6 0 4 % SIER (erecta) \SP (self-
pruning) il SP5G (self-pruning 5G) , 38 15 #k il '%
B AN IR RE R 40 d Y RE B IR BB S BN
S 7 14 2 Al R L B T — A & BT AR
AT RE, BE 0% W R AL T A AR S R R
S 2 e on ELAT ARG (00 3 M EL S B T T LR
Zsogon S e PR A T R 0 1) LR 2SO
6 MR LR T REIE A R IR RSB
KB TR BUR AR BURAB R BT B A R 1
AR U, 2% A B B2 1 R CRISPR/Cas9 4%
AR BEE A0 T 0l 7 AR BRABUR & 32 5 385 0l 8 5% M (EL A BT
WRE T, S5 R ER W] T CRISPR/Cas9 FLARAE
e i B b HAA AR BN A
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2.2 CRISPR/Cas9 ERR S HEMMEMEPMNEA
R 7N

FoitE K A B A& mIE T 5 miR AR EZ R
W EEM BN EE AR EE, FH IS
FAPr ik — B2 F MY £ 2 H bR, CRISPR/
Cas9 F AR A8 W) bt 39 A O FE IR 2y fig S 3of 455 i 38
HLH A5 5T HF e & IR 55 T/ AP E R,

2.2.1 REHEE TEEXFHEREERA
R PR AR ZE Y i . MAPK X R G855

HSZ 5 WHEY PR RN, CRISPR/Cas9 i %
1) SIMAPK 3 Z2 78 (4 & W 3] 1 i AL S % i
a2 K I 361 TR A7 A AR L e A L 95 DA B A
N ¥ A7 SINPR1 (nonexpressor of pathogene-
sis-related 1) flf CRISPR/Cas9 [ 58 28 4 .t 15 5|
TRMEE RN, WEW SIMAPK 3 Fl SINPR1 1 i
T F W E L TR R R B B R R T X S
AH O E PR B 2 4 o S T DR A R R A R Y A
PRT 2R T B AT AT 1 (H R R AR B E — 25 N H
MY HMENEYAERK AT REHEHTEH,
FE3E i 55 A0 ER 8 2 R A B AR R R e A R — o R
JE R I 30 A 3E R BE 50 . 9 3R 3K B BE (brassi-
nosteroids, BRs) {5 5 i % 9 & 2L 4% 5t [ F BZR1
(brassinazole resistant transcription factor 1) %5
LI . CRISPR/Cas9 15748 SIBZR1, 58 2% Uk it
IR T A7 L AR S R D A 3 T
ZPERRAR L SEW] SIBZR1 R4 B E T,
Z W 7 17 8 35 [ F LBD (lateral organ boundaries
domain) & 5 % #] fR (jasmonate, JA) 7 5 1£ &,
CRISPR/Cas9 /' F#) SILBD40 £ H 528 47 T
THRRYT RN, IR T SILBD40 J2& 3t 5 M i i 8 58
BF BOl — U5 R A CRISPR/ Cas9 £ A S
WMAREEZREA K GID1 (gibberellin-insensi-
tive dwarfl) , 15 2 7 B K 508 T PR RRE = KE 0 A
KRR AR T FAPLRRE . T
BEEEAl EIRA TR T 5% R (gibberellin, GA) 57
PR ZRPER KB T 2 N AEYIEN GA
P Y o O R Al T A v e Ve R Y Z TP A2 N
JoTF 8 FE AT LA s R BT K ) A% 3 A 2 Rl L
i Uk 20 7% s 1 DA T 4R o A R SR (H st
PUR A I Z M 0 2 R b A7 Fe e — 2B 5T .
22,2 REMEY EROLEXWHEYAEKER
A= EZEAE RN K Z —, CBFs(CRT binding
factors) i — R AEAE T8 YA b i v me 1 X5, R
CRISPR/Cas9 4% R 4 SICBF1 3 P45 31 1) 58 48

AT ARG T8 Bl 36 A T 52 P 0 AR R R L 2 AR IR
R & o AR S B AT L 1 A A B
Bl R ARG HIE T 3X — 25 5, [R) BF A 2] JA L ABA 4§
WME SRR . XL BT i AR 5T ST-
CBF1 fEHUR LS /E R 7 X, i &k & e lnl
LG5 il SBPase RE % £ /&5 AF bk it 2€ ¥, i R
CRISPR/Cas9 QI H {1 5 24K sisbpase W)X & F T
IR, 98 78 T SO R A P B I 1l R A AR I RR
A KB B I T R o A B PR A S E R Y
BEAG, OF 0 ) AsA-GSH T i 36, ix 46 45 5L 3 £F
SISBPASE (1) 5 7% 3 2 0 il GSH 2E W) & B
AsA-GSH FRAE 20 il AR L 75 5 19 S84k B L, JF
FW SBPase J2 % i A ik X I T I 360 1 5 A2 ey 7 T
WY

2.2.3 IREMEME R S RED A E
K JE 4 3 RS [ 8 ) 0 ] B e A 4 7™ i R T
i, HyPRPs(Chybrid proline-rich proteins) & &k il
38 N B 45 -, CRISPR/Cas9 A% i 4 #5 St-
HyPRP1 i 35 ih 75 0 & F1E F2 By Bt £ B i 36 %
it 2P, SIHAK 20 Chigh-affinity K© 20)fi T 4
5 Y R ET B AT B i s PR T RE L BR A8 dEFr
AL R KA Na' Fa25, F ] CRISPR/ Cas9 #
AT R » R 32 ik DR 55 7 ohi T 66 4 R G M i e i
O FHL LA B TR ol 0 128 7 F 8t T AR
2.2.4 RRETBREFESN WHFELEXNRIEY
P M8 B IR K, MAX1 (more axillary
growth 1) FE [ J& fi I 45 N BE (strigolactone, SL) &
BCHEDA 1M SLJ& AR A A Z R & T 06 7 i A
Wit SIMAX 1 JEH 5 3 40T 19 sgRNA,
3] SIMAX 1 R R K, R LR AE K SL K
REAIG . I AR A X A 25 25 2% 7543 B 5 Y (Pheli panche
aegyptzaca)E‘J?}L‘@aﬁﬁ&iﬁ%ﬂ*ﬁ%ﬁi%ﬁﬁ%@tT
BTk

2.2.5 RESMWIELWEBRYE Y E g
“H (reactive oxygen species, ROS) & B HL il vk 2 Ik
A 0 A R 0 AR AR R B CGFS 4
ik % 1 (CGFS-type glutaredoxin, GRX) , CRISPR/
Cas9 5548 A il 4 Fp GRX 2 (SIGRXS14.,
SIGRXS15, SIGRXS16 F1 SIGRXS17)., H: v Si-
GRXS14 F1 SIGRXS17 &7 (RN 4 €% TR H 4
J B L i G R RO R A A AR T 38 AT B A
J& LT SIGRX S 16 53 78 4 32 B X € v T fin S0,
T ok PR TR vk v 7 T 22 B AR A e 38 1 it
ZYERRAL T T,
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2.3 CRISPR/Cas9 ERR S EMMKMEPME A
R 7N

UTAE SR, T MG 3 kA TR AT 22 AR DR A T
43R LR 6 1 R4 PR S A4F , 3K 4B 7 B R
T F A7, CRISPR/Cas9 45 1 10 A S0 &
Tl X AN [7) 2 R D AR () IR 7
2.3.1 RSEERFHYE Fili kR FEEaET
F 3% e T B B R R e AR
HEEWEREKEZE. 5 R F i Mlo (mil-
dew resistance locus o) 3K K% SIMlol J& H ¥k
Sy IEHE N L A F CRISPR/ Cas9 4 A B4 SIMlo1,10
AN H PRI AT AR ] R b AR G A B 2 R
G TR <Y i 2 o | W N A NG A & e U
o8 A8 A, By 7 XUHE 5 CRISPR/Cas9 £ 4t L [
SIMlo 1, I35 SIMlo1 K B2 H o 24118
KR 0 28 AR RS AR, PR S IR SE I PMR
(powdery mildew resistance 4) [ it 2 5 F 41 %
R, Z M0 CRISPR/Cas9 £ 48 4 i SIPMR 4
(10 i 3% 2 7 e o 3 Wb R 0 T UM BT e L ER T
CRISPR/Cas9 5 [K 21 J 48 £ R e 0%t H A &0
5 v M BR X LB P

R 9% B (Phytophthora infestans) Fr 5] & 1Y
1) 7 T3t M 28 i 2 — o ™ B A 6 L R, R
Wi 5 i 75 40 77 i . miRNAs BE % 58 Job 10 1 H 0 g
PR o A W B, R H 2 g 4R &R S I R
miR482b Fl miR482¢, K B XL 58 A8 A Ly BA. 58 725 {A i
PEE RS 8 T miRNAs P BT ALY, it
Hh,CRISPR/Cas9 BE T SIMYBS2 X 80 % 5 1
E ) PR AR L R HEI SIMYBS2 it SA FlJA {5
Sl AP BOR B E . CRISPR/Cas9 # K it
A T 22 3 5 B0 % B A OC BRI D e Y i — 20 e
e,

B IR 2 o 8 B R O g P T R v A A gk ) R
(Fusarium oxysporum) T ¢ Bk 2595 LA K K
i1 (Botrytis cinerea) It S 2 K T3 9 vk,
CRISPR/Cas9 448 ™A 1) Sloyc08g075770 FEAE (A
Xt A 25 0 SRR B Y L AN L AT R R (meth-
yl jasmonate, MeJ A) 7£ H ¥ 1 106 i A5 5 1% i3 1
L WEFE N G HEN MeJ A #H 5C 5 5% I+ MYC2(my-
elocytomatosis protein 2) £ 5 I ¥ 4 ¥k Hit 1,
CRISPR/Cas9 L RN F 1 SIMYC2 2748, [EL T
GEAR PR S SR B 9 BE 1 R AL B IS 1 LA %
FEPAE MeJ A 175 5 1) 7 it SR S B0 3¢ 2 9 3 7 vl 1
PR . MAh L B B 5T A AR I SR A it 3 [

PL (pectate lyase) B CRISPR/Cas9 il [5 ¥ A8 £k X
IREEITI G AR T 50 %64 11,
2.3.2 REFSHFHRE  FibiwE ki s Go-
mato yellow leaf curl virus, TYLCV) J& % A =
() — Fh 58 K ¥ 5 %, CRISPR/Cas9 fiE % H )
TYLCV S5 I 42 w5 A 4 o P L e A i od
B F A TYLCV JE R 4L #9528 Rep (replicase)
T Ah 5638 B CP(coat protein) s I F 25K TYLCV
Ptk Horh CP 7 50 28 A8 0% 0 i 0, A I S A
EFIHE S B R 3 7 M i CRISPR/Cas9 3% 3k 2%
R TYLCV B A A X B IR Cintergenic re-
gion) Al CP J3 51, & I 2] 55 53 1Y B 22 0 20> o & A 9k
WY BRI Z A ST A Bl i QTL % fif (quanti-
tative trait locus) %5 T Pk % B9 — RIS, Al
F CRISPR/Cas9 Bk Ty-5 1 i 4 % i) SiPelo
(pelota) J& A, H @l 2 0 fE A7 5 il TYLCV i
HAHE

R B T P 58 56 440, /N8 RNA 7% 35
By A0 i ) A AR B A 60 . DCL (dicer-like) o il
THiZ 5 RNA JUER. Hoh LR IF DCL2 B K
TR F% #E dsRNA (double-stranded RNA) il T
i 22-nt ) sRNA (small RNA), Ml & 1 % #
RNA YU S THFSE %A DCL 2 e 400 i 2
AE . i il CRISPR/Cas9 %45 % fii DCL2 DU 5K
% ( SIDCL2a-SIDCL2d) h £ 35 # & & W0
SIDCL 2b, . 35 #6581 3 i Xt 3 il 4£ M 75 (toma-
to masaic virus, ToMV) B it £, [a] B 4 45
SIDCL 2a Al SIDCL 2b W) . 35 4 w5 F il 0f 4% 3 X
i B (potato virus X, PVX) FIAH 4L % B (tobac-
co mosaic virus, TMV) B 5t 47, #F 58k A
SIDCL 2 J2& 3 i HT i 5 3 48 11 19 5C 1 4 Lo o
UEW] CRISPR/Cas9 7E B £ 7 fii 2 5 B it Fb 75 187
AERKIE T,
2.3.3 ReEHWERIE THFBEPEME (pseudo-
monas syringae) &40 P B A9 BOR H L A
BEHE 8 £ COR (coronatine) 5 i 48 &k S fL 19 7%
o N A T AR B2 44 . TAZ (jasmonate-ZIM) 2
W3 F g COR 363244 .2 il CRISPR/Cas9 4
SUJAZ2 AEIBD JTAZ S5 H I8 5 A% P Xk 40 i ok
B 7= AR 1T

B B (Xanthomonas euvesicatoria pv) 5l
T I - PUB(plant U-box) 7£ £ Rl /E %) v IE
li 6 8 M R B0 6 7 - CRISPR/ Cas9 it [ SIPUB 24,
SRR R M TR T3 R B Bk TR
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SIPUB24 j2—F i il i J@ T3 MEyitk 5, it
097 B ML A 0F 9 4 H L A Bk Ah, CRISPR/
Cas9 31 P (resistance, R) # A Rx4, & B Rx4
PR B ABE R T3 5 A S 0 B E AL
il #B AU WV Chypersensitive response, HR) , AT 42
9 0 TP S TR R R i e BT e AL R AE 5T B it
Sl
2.3.4 REEKSERBEN LHFMKET
Hi— R FEP L0 5 B H] S (Susceptibility gene) 8
HEpAMT iEdim . CRISPR/Cas9 # AR T
— B Z Em B AR B SR, s S Ao S AR
SIDMR 6-1 778 , W 3 7 i 5 9 19 240 1 | 51 68l A1
FOR ORI 2SR B O R R BN L Bk b,
CRISPR/Cas9 5 1) £ e i 2 5 3% [ ACER 1a il
ACET1b 5878 . 715 % F0 1 F0 40 3 S 4% 79 41 1k
fl B

BT 2 X BT TE 45 R AR B T CRISPR/Cas9
TEPUE PE 7 TH 1 SR OR TR I BOR e i 1 B BHE A
BARF AR o AL ) F0AE ) AR BT AL R Al
A FRAE K R B T AR KA HE S
3 CRISPR/Cas9 & 4 f7 4 1 [n] B K%

% CRISPR/Cas9 £ A iy A Wi & & . e pi
A R T — A R, CRISPR/Cas9 &
3¢ g 5 S R AR R LA Ak R B O Ak D) R R Y R
[l 4 6 2 8 1 FF & 55 7 1 e 0% B IR CRISPR/Cas9
e AR Y Jy BRAE
3.1 HBEUEHRS

R4 CRISPR/Cas9 H A K B i A 45 £ (H
T Cas9 %12 M fF — & B2 Lol LI . sgRNA
Y3 2 1) () 5 G, B T B O e T R
BARTEAE Y LA WS ERF R A R R R T
25 A 5 1k DA A e A A8

FaE 9 sgRNA fE % 3 1 i 41 51 % RNPs,
Moreno-Mateos Z52 M1 B E 4 G M= A WY
sgRNA B Fa & . it sgRNA I 5 8 FF poly-T
F R GNGG J751 . i A B8 sgRNA L 5 B AR
FE TS 5, A L A8 RS [ A Cas9 B iF AT
2t 51 R 0% Bl A i/ I 0 R L A
580 ST AN BT A DG, 2% Tl 3O I 3l 4 O e DA gk AT
TELAT R S R S B BF SN R T R
ZHE RSl B IR sgRNA, 8 [m] B4~ 3 [H AN [H]
RO, SOV b R A7 B K g 4 . b L 4R Cas9 &

BRI T A SHIE S HDR B & a5, wii
oA 3t ) 7 ) 45 il 2 G R R 4 A A
3.2 HURZEMMRL

H i, % A CRISPR Z 4t L 45 1 2 i O 32 2 1
IERAT A T 0 e A 1% 5 1 AR BB 8 Al Cas9 I
sgRNA FEAH ) 1 N Fa i 3% 3k, (A 5% 1b 0OR BAIR,
You ZEUU R A A0 A G B R G RE 8 T AL
B FE AL AR L Ma 2706 SpCas9 Al gRNA i
AF| SYNV 5 35 5k K 41 v, L o 00 7 G 4
RORBEAS K F] 40% ~91% , CRISPR/Cas9 5
FEAL BB S0 B UG I JE R 4 48 L Yuan 2855 7 MU
a1 B - FOBL 1E F 1 = KT R e A R 4L
b A TR AR Y AE e o b BRI e 3k, AT H bR R Y
Wi RGBS T IR AR L) S T Cas9 HikE
N ST g F U = R R o P 3 A AR )
PR T 5878 g 3 -
3.3 HEERAGERANERE

T P CRISPR/Cas9 1 BR i 4 ] &5, 58 /Y
B DR 4 8 5 R A A N U e e R B T LT U A A
RN CRISPR/Cpf1™ DL K RE % K5 v 2 4 1 il i
i+ R (base editing, BE) " 45 |

Zetsche 25 & B Cpfl &4 H 4N CRISPR
A5 2 25V, X R 8 CRISPR/Casl2a, % &40
i3 — RNA 5 8 N U, =4 B A7 5" 5%
PR RGP A ity A2 1E NTHET AL RS o b 2 48 L 1R . ot
SMZIZ IR IS A B & RNase BES )% RNA, H /> 1
HE/NREE O M A A0, 57K T CRISPR 1 3 H
RS, IR R T Z RS Cas12a™, LU
PR AR, POk PAM X 8 IR S 98 L
CRISPR/LbCpfl 193495 # £ # &2 il 7 R 50 fff
FH 82 2 5 2 hm e B A DG SIHK T 152 A5 56
HAREE S T HDR B3 K 41 40 58 550% o J6 #% 3
9 W BT 38 887, Bernabé-Orts™™ JiF Bl T
CRISPR/Cas12a BeW 7E F i vh 47 5L 9 4 5, O H.
AT K 1 B S RN L B 9% 1E i CRISPR/Cas9 Y
BRTH ZRGEEENHT ToMV %58 G
HS2 9N 7 (tomato brown rugose fruit virus, To-
BRFV) i 5 S G I

BE e Z R fEY) R A5 2 T YT AR
HT CRISPR/Cas9 R4t , e % 52 B A BL B 46t
5 CRISPR #f [t . BE NKHi T DSBs #9774 . Jo i
i DNA 2 59 500 H g 2 vk fn 3z ad v
Shimatani 256 CRISPR/Cas9 H1i% 1k 7 5 (19 iy
H & B AID Cactivation-induced cytidine deami-
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nase) il & L R Gifir 4 N Target-AID, FI % &
B AT g L A B 0 58 AR R AE RO R A SR AR L IR
W17 BEE/EY R R 7 A AT AT M. Bt IR &
ALS(acetolactate synthase) & 5 fin G il Bk K 25 B
) SRR A BT L ELOKG B 00 RE e B AR RS T,
Hib 12, 9% W F ARG T-DNA i A, HHK
A m e s b R AR TR 3 B (SID-
DB1.SIDET1 #l SICYC-B) [f] i S A5 & B # %
LI T FARR LR PR EEEW T
Target-AID T & 2 35 £ R 68 98 = 20 9w B 2 1 5
RO Lu N AR F i A Prime Editing # R
SIEPE TR VY e A A A SO R L 3% AT BA ST AT AR
e DR 3 o e PRUAR VR R AT e e AR T AR )
FUGE 3 - DT R KR i e 400%

AN, B B A% CRISPR/Cas12f17°% L K
TnpB" " 4 RGBT & . X 8658 A R S5 fig g L
2 PAM J¥ 50, 4546 ST Ak, 97 K 1 5 IH G 4
(9 8 FH 0 L 3 ok s PR 2 8 2R 40 A O b BT L TE
i LAl CRISPR & 48 BN — A~ H ML 1 B AR 2
— TR RS TAE .
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