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Abstract: To investigate the molecular and physiological mechanisms associated with resistance diversity of
different pineapple varieties, we utilized the two cultivars, PZ2 and PZ3 with differential stress-resistance
in this work to comparatively analyze the transcriptome and metabolome. (1) The transcriptome sequen-

cing results showed that a total of 1 667 differential expressed genes were detected in PZ2 and PZ3 compar-
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ison group. In PZ3, 770 and 897 differential expressed genes were found to be up- and down-regulated
when compared with PZ2, respectively, and 20 differential expressed genes were involved in adversity re-
sistance, including ASR3, SOD1, POD48, HSP20, GSTF1, GSTU17, as well as WRKY and MYB
transcription factor genes. (2) Metabolomics analysis indicated that a total of 208 differential metabolites
were identified in PZ2 and PZ3 comparison group, 98 and 110 of those were up-and down-regulated in con-
tents in PZ3 when compared with PZ2, respectively. Totally, 22 differential metabolites were found to be
associated with adversity resistance, including amino acids and derivatives, lipids, flavanols, carbohy-
drates and glycosides. (3) It showed that the expression profiles of the eight genes revealed by qPCR were
consistent with the corresponding RPKM values derived from RNA-seq. (4) The correlation analysis
showed that the pathways for co-enrichment of differentially expressed genes and differential metabolites
included flavonoid biosynthesis, phenylpropanoid biosynthesis, tropane, piperidine and pyridine alkaloid
biosynthesis, and cysteine and methionine metabolism. It was found that the expression levels of abiotic
stress responsive genes, antioxidant enzyme genes, as well as structure and regulatory genes response to
stress, were higher in the pineapple cultivar with strong stress resistance than those of the cultivar with
stress-poor resistance. Also, the contents of flavonoids, amino acids and derivatives, as well as lignans
and lipids metabolites were higher than those of cultivar with stress-poor resistance. The data of this work
would contribute to provide references for the comparative analysis of mechanism of pineapple varieties re-
lated to different resistance and to provide a theoretical basis for pineapple resistance breeding.
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Tablel

The qRT-PCR primer sequences for the genes

FLA ID Genes 1D 1E 514 Forward primer

JZ 18] 5| %) Reverse primer B AJEE Tm/C

Actin CTGGCCTACGTGGCACTTGACTT
LOC109705329 GCTCACATTGTCTCGCTCAAACTTG
LOC109704375 CACCGCAAGATCCTTCTCCAACAG
LOC109721892 CGGAATCGTGACTAAGGACCTGAAC
LOC109720819 TCCCTAAACTCGGTGCTCCTCTG
LOC109726005 CCCTCTCCCTCTCCCTCTCCTC
LOC109705050 GCTCCTCCTCAAATCCAATCCAGTG
LOC109703989 ATCCGAATTGAACGACGAAGAAG

LOC109720393 CATTAGCCACGATTCCAGGTGTCAG

CACTTCTGGGCAGCGGAACCTTT 60
TCTCACATTGGCAAGCATCGTCTC 60
CCACCAGAGCAAGAGGCAAACC 60
CCGAAGCCGCTCATCTTGTATCC 60
GCTCCATCATCGCCACCATGTC 60
AGCTTCACCCTCACCTTCATCCTC 60
CAGTTCCGGCCCAAACTTCGTC 60
GGAGGAGCAGAGGAAGCAGAGG 60
TTGTGATGGTGGAGGCACTTGAAC 60
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Table 2 The key differential expressed genes screened

M 1D e P 1 B 2 AR R
Gene 1D Gene annotation log, FC
LOC109724405 A ALY AL B (SOD1) Superoxide dismutase 1. 41
LOC109717384 i A ALY (POD48) Peroxidase 48 3.10
LOC109726005 i E AL Y (POD31) Peroxidase 31-like 1. 10
LOC109721892 s AU (ALDH2) Aldehyde dehydrogenase family 2 member C4-like 1.05
L.OC109705857 FE AL R A J5U i (TR) Tropinone reductase 1.09
LOC109720819 I-F IR A % 3(4CL3) 4-coumarate-CoA ligase 3 1.28
LOC109706842 1-Z RN - 1-R R E AL i (ACO) 1-aminocyclopropane-1-carboxylate oxidase 2-like 1.09
LOC109727752 AWt Ik S4B (GSTF1) Glutathione S-transferase 1.81
LOC109705050  #F M HAK S-%: 8 (GSTU17) Glutathione S-transferase U17-like L1
1LOC109704375 Y5 2 1 Disease resistance protein RPP13-like 4,47
LOC109705329 HUH [ Disease resistance RPP8-like protein 2 6.97
LOC109705911  fi§fR#h 4418 11 Protein NRT1/ PTR FAMILY 5. 10-like 3.69
LOC109705505 KR 1 Ribosomal protein L38-like 5.66
LOC109705957 6 7% R 38 35 5 AE 11 (ASR3) Abscisic stress-ripening protein 1.02
LOC109715638 PR H (HSP20) Heat shock protein 4.19
LOC109704830 P FE S 7 (HSFB2B) Heat shock transcription factor 1.08
LOC109703989 WRKY #% 5% H ¥ (WRKY26) 1.20
LOC109720393 EAHEEWEEAN MYB %K F Ll0-interacting MYB domain-containing protein-like (LIMYB) 1.55
LOC109727968 MYB # 5 A ¥ MYB 1.73
LOC109722005 MYB #% 3 [+ MYB-like 1. 84
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Fig. 3 Volcano plot of differential metabolites
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Table 3 The key differential metabolites screened
BES R 55 UREL/ER S 2SR VIP
Classification Metabolite 1D Name of compound log, FC
mws0036 18 B2 W Hesperidin 6.22 1.2470
mwsl1066 2= & M 21 Naringenin-7-O-Rutinoside(Narirutin) 14.51 1.2763
mws1661 MK Z Diosmin 15. 86 1.2777
pmb3041 F I I-O-JERERZ Tricin O-saccharic acid 12.51 1.2169
pmp001080 T M B (AR -7 88 BB Neodiosmin (Diosmetin-7-O-Neohesperidoside) 14.85 1.2815
pmb0624 6-C-C) F A i 5 K 4B OB 6-C-Hexosyl-luteolin O-hexoside 14. 26 1.2282
pmp001314 6- 2L I 25 W3-3-O- 14 T-6-O-F & BT 6- Hydroxykaempferol-3-O-rutin-6-O-glucoside 13.56 1.2711
I pmn001583 i Hz Z-3-O-VEM BT Quercetin-3-O-robinobioside 18.43 1. 2759
Flavonoids pmb3002 A REEE T-O-LFEMIF Chrysoeriol 7-O-rutinoside 16.21 1.2832
Hmgp003086  # # fil-O-25 F B Tricin-O-rutinoside 12. 64 1.2445
pme0368 FERR T-EHH (BB ) Apigenin 7-rutinoside(Isorhoifolin) 10.78 1.2518
pmel605 1143 i -3-O-PE MK Kaempferol-3-O-robinobioside 16.79 1. 2815
pmp000594 TR Z-7-O-ZEF M Diosmetin-7-O-rutinoside 14. 88 1.2786
Hmpp003242 5 B2 E-3-O-# % B Isorhamnetin-3-O-glucoside 14.93 1.2118
mws0042 FWE T JLE K Epigallocatechin 11.49 1.2741
pmb2586 W& F ILZ % Gallocatechin-catechin 10.12 1. 2486
SRR pme0006 L-ifi & R L-proline 1. 30 1. 2566
Ar:fixn%qilids mwsl1570 i 2-4-32 F2-D-Jl & FR Cis-4- Hydroxy-D-proline 1. 10 1.1929
and derivatives Lmmp002963 TP BEH He R 45 & R Methylquercetin glu-rha 16. 54 1.2760
AR # Lignans Rfmb25702 A - 2 Tk 7 9 B Pinoresinol-acetylglucose 10. 52 1. 2043
mb0885 44 A-9Z,11Z,13E, 15E-+ /\ @k UG R 4-0x0-9Z,11Z,13E, 15E-octadecatetraenoic acid 1.40 1.2394
p
1% Lipids
pmp001281 ¥ If W B MEAH K LysoPC 18:1 1.57 1. 2540
x4 ERFRZERANMERREWELBELHT
Table 4 The correlation analysis of differential expressed genes and differential metabolites
22 3 F kI Differential expressed gene 22 A0 Differential metabolite
i
Pathway s F-R RS EZS PR g
Name Gene_log, FC Name Metabolite_log, FC
FF RER-O-48 #2 3k A AL k5 B Tl KBS [y
By R Shikimate-O-hydroxycinnamoyltransferase 1.17 EH I Eriodictyol 1.59
Flavonoid
Biosynthesis 1-5 FE IR TN - 1- 4R R A 1L B E P'S ioallocatechi
l-aminocyclopropane-1-carboxylate oxidase 2-like 117 RULFILAEFR Epigallocatechin 149
ALY Peroxidase 1. 10 K5 e Spermidine 1.03
N » - e A s T R
LA R L BEL A Aldehyde dehydrogenase 1.58 L- KN & 2 L-Phenylalanine 0.87
Phenylpropanoid 25 - O-48 ) e ek Tk Fo Y T
I RO -4 2 5L Py R I 5% 74 T e T e o
Biosynthesis Shikimate O-hydroxycinnamoyltransferase 1.17 L-K N & 2 L-Phenylalanine 0. 87
4-F -4l A R 3 4-coumarate-CoA ligase 3 1.28 L-# N & i@ L-Phenylalanine 0.87
B e URIE AL BE  FC 4 I8 JE B Tropinone reductase 1.09 WRIE Piperidine 1.11
A WA A
Tropane, piperidine FE & B 36 BB Tropinone reductase 1.09 L-%% % R L-Isoleucine 1.12
and pyridine alkaloid
biosynthesis FE & B 6 LB Tropinone reductase 1.09 L-2KN & 2 L-Phenylalanine 0. 87
RN B A ,
VRIRR GG LRI 1.09 L-ZE &M L-Methionine 1.24
B -aminocyclopropane-1-carboxylate oxidase 2-like
ERMAW e R A Lo 5" L5 B R .
ysteine an o PN PP T .09 o el . - 0.59
methionine 1-aminocyclopropane-1-carboxylate oxidase 2-like 5'-Deoxy-5 - (methylthio) adenosine
metabolism = T s s AL
LIRS -1 F UL 1.09 L-2 42 L-Homocystine 1.71

1-aminocyclopropane-1-carboxylate oxidase 2-like
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% % RPP13-like il R £h 5532 TR (A IR R A .
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P73 Xt ¥ 55 /9 3E B M 5 AP Y. WRKY Al
MYB %% 5% K7 JE D AE PR 45 R A KR B o AR
MR AR R M ia o R R A E B E
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