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Differential Expression Analysis of Genes Related to Phenylpropane

Metabolism in Lycium barbarum under Salt Stress
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Abstract: In order to investigate the differential expression of the genes related to phenylpropanoid metabo-
lism under salt stress, Lycium barbarum treated with different concentrations of NaCl (0, 100, 200, 300
mmol/L NaCl) was used as the research material. High-throughput sequencing technology and qRT-PCR
were used to detect the differential expression genes related to phenylpropanoid metabolism in L. barba-
rum under salt stress. Meanwhile, the activities of key enzymes and the contents of products in this path-
way were determined. The results showed as follows: (1) A total of 58 genes related to phenylpropanoid
metabolism was differentially expressed under different concentrations of NaCl, and most of the genes
were up-regulated or unchanged with the increase of salt stress. (2) With the increased NaCl concentra-
tion, the activities of antioxidant enzymes SOD, POD and CAT in the leaves of L. barbarum were de-
creased, while the contents of phenols, flavonoids and lignin were significantly accumulated under 100

mmol/L. NaCl treatment. The results showed that L. barbarum could regulate the up-regulated expression
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of the genes related to phenylpropanoid metabolism, increase the synthesis of phenols, flavonoids and lig-

nin to adapt to salt stress by scavenging excessive ROS and improving cell wall strength. The concentra-
tion of NaCl tolerated by L. barbarum ranged from 100 mmol/L to 200 mmol/L.

Key words: Lycium barbarum L. ; salt stress; phenylpropanoid metabolism; differentially expressed genes
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P 30 5,60 ‘CiB Kk 1 min,PCR G %N 40 4>, 4
PR 3SICRIT 2
HEEEEERRE YT

Gene function annotation and primer sequences

A

OISR A Rk

1
Functional annotation

E R

Gene name

ElL B

Primer name

519 751

The sequence of primer(5'—3")

“ actin-F GTCCTGCTCACTGAAGCACCTCTCA
Actin Refe\]r:ni ljene
actin-R TGTGACTCACGCCATCACCAGAGTC
e PAL-F ACACTCTCCTTCAAGGCTACTCTGG
PAL Phenyﬁfqiiﬁzﬁpri%aflya%e
| PAL-R AGTGAGCAAACCAGCAATGTAGGAC
L e C4H-F GAGTAGATTAGCTCAGAGCTTCGAG
CiH o mﬁ%ﬁhﬁﬁml ‘
nnamatesd-hydroxylase C4H-R TGCTTCCAAGCTTCTTGCGTTCATC
s 1CL-F GGCTGCAATTCTGATTATGCAGAAG
oL T Col ik
coumarateLof ligase 4CL-R CACCAGACATCATCGTCCTTATGGA
- PODI12-F CACATTCAACTGTCCCATCTTGATC
PODI2 %ﬂm? 1122
eroxidase PODI12-R ACACGGTTAACATGGACATTCGGAG
X = . CCoAOMT-F GGTAATACCATCTCCAATAGGAAGC
CCoAOMT Caf flvili)uiiﬁgﬁﬁg (/§ *i“ilt—lh%l jfa?ﬁ%ra se
y yitransieras CCoAOMT-R GATCGGATATGACAACACCTTGTGG
1.2.4 $METTEMREFARREEEXERE AL (K 1, Hod, i NaCl ¥ B 8, 7 2 il

i E
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PR (ACL) | &0 85 i 40 i i (DFR) 1 A 2 3t &0
fitf CCAD) [ PR HE 4700 2
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(L YL 900 X T E M AD M R AR AR ) AL
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1.2.6 B EKEMEARZZFENE
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T E S R AT I A
1.3 #HiEaE

fii ] SPSS Statistics 26. 0., Origin VL } Excel
X B AT 4 T AR 1A
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HEMEXN TEMRRHENERESHZN
T AR AR R S A R 0 A BT AR R R

2.1

4 F bR = SR N S T BB #, 7E 100,200 mmol/
L NaCl 4b B 2w F xb B 41, £ 300 mmol/L
NaCl Zb ¥R texd B4 2 R R, [FEE, 5 0~200
mmol/L NaCl &b 3 A Lk, 7 5 #1424 i £ 300
mmol/L NaCl 23~ it Jr B i /b, ERAK R U]
BEAR, M =5 w o e i Bt . LA RS R R, T
SR AR A Y IR 3 Wk B AE 100 ~ 200 mmol/L
NaCl Z 17,300 mmol/L NaCl B & # i FoA: &,

Il|

v

T ~IN4r5%1% 0,100,200,300 mmol/L NaCl Zb3, T,
K1 bR 7 d R MIAC 4
I — IV are 0, 100, 200, 300 mmol/L NaCl treatments,
respectively. The same as below.
Fig. 1

The samples of L. barbarum seedlings under

salt stress for 7 days
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Fig. 2 Differentially expressed genes related to

phenylpropane metabolic pathway in L. barbarum

leaves under salt stress
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Table 2 The main differentially expressed genes related to phenylpropane metabolism
pathway in L. barbarum leaves under salt stress
s I vs T NV owvs I
Al R o
HH D %effjfl’ %[ﬂ&ﬁﬂ
Gene ID name 2R P 1 2R P 1 2 B AEH P Gene description
log, apc P value log, ape P value log, ape P value
ey
AOK32733. 1 PAL —0.636 6 0 —2.157 8 0 —2.3867 0 KW%@%%@@
Phenylalanine ammonia-lyase
AGE10592. 1 C4H 0.108 9 0.872 46 2.019 3 <<0.001 0.2300  0.701 86 . WEER-4 TR AL
Cinnamate-4-hydroxylase
AGE10594. 1 4CL —1.266 7 0.039 23 1.229 3 0.001 25 —0.837 3 0.096 63 4-FTi MR- CoA é}%%
4-coumarate-CoA ligase
i T A
AHH55328. 1 CHSI 4.597 5 <20. 001 0.148 8 0.781 06 0.613 9 0. 188 85 R 7
Chalcone synthase
AID50182. 1 F3H 5.079 0 0 1.480 9 <<0.001 2.094 5 <<0. 001 BB 3 FEAE
Flavanone 3-hydroxylase
ety
AGT57962.1  F3'5'H 7.0874  <<0.001 24402 0.002 41 1.8643  0.02573 SRBLH 30" L Rl
Flavonoid 3'5'-hydroxylase
ATB56299. 1 DFR 6.8843  <<0.001 3.0920  <<0.001 3.8656  <0.001 | AR AR
Dihydvroflavonol-4-reductase
N
AHHS55331. 1 ANS 4.824 0 <0. 001 0.981 0 0. 005 85 1.357 3 <20. 001 mé?nﬁ&:% .
Anthocyanin synthase, partial
mneEEE A A AR SRR
GAV83798. 1 CCoAOMT 1.704 4 <<0. 001 —0.659 2 0. 306 89 —0.610 5 0.295 93 Caffeoyl-CoA 3-O-
methyltransferase
PR EE B 5 %0 6
LOC102579562 CAD —1.372 2 <20. 001 —1.787 0 <20. 001 —1.6357 <0. 001 Cinnamyl alcohol
dehydrogenase 6
LOC102601606 PODI 4.153 5 <<0. 001 0.820 2 0.730 04 3.004 1 0.016 40 . ﬁg/ﬂ/’%% 1 .
Cationic peroxidase 1-like
b A
LOC107867619 PODI12 3.336 9 0 2.249 8 <0. 001 2.286 5 <0. 001 ﬂ%\/ﬂﬁ%@& 1,2
Peroxidase 12-like
LOC107011357 PODI19 —1.396 0 <20.001 —0.578 1 <20. 001 —0.959 5 <20.001 i E ALY 19 Peroxidase 19
LOC7483472 POD411 5.4259 <20. 001 3.334 7 0.218 02 3.397 7 0.112 38 W E ALY 41 Peroxidase 41
LOC104097756 POD48 2.269 5 <20. 001 0.440 6 0.441 12 0.743 2 0.141 53 i E ALY 48 Peroxidase 48
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Fig. 3 gRT-PCR and transcriptome FPKM analysis of
key genes for phenylpropane metabolic pathway

in L. barbarum leaves under salt stress
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Fig. 4 Variations of SOD., POD and CAT activities in

L. barbarum leaves under salt stress
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Fig. 6 Contents of phenolic compounds. flavonoids and

lignin in L. barbarum leaves under salt stress
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Wi E . FEROmER A OEE T & B CHS SEH 1 3%
KA R T T B AR R Fe A Rt Rk
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B L Al S S R R R ST R T
Bk AC AT B E R R A LR AR T DGR AR N 25 R 3R
K DA K it AR 1R I A8 U AF 22 R 4 O R & R
[STER
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B0 1 2 I L 2 T ROR T R AE AR AR Y
FUE T 2l A B AR B0 Ak R G 2% ROS 1 5
P 38 2k G B BT 3R 1 0 4 L RE B R SR P [ 3
JO7 R 38 3 AT R R T R AT N AR 30 R Y —
FhER BARAE . {HAE 200,300 mmol/L By & B £ il
UL 3 A E WA s B S s . AR R T £
PR AR A AR R Z B, B A R T B A AL AR K B
3 Eh e B 7E 100~ 200 mmol/L NaCl Z [f], % 5 b
Wit T T E AR KBS A — 3. ARAFREE R
hy B B 2R N e AR I AR AR OGS R VB DL K S
P v 7 B M ATk v AR AL T AR A R B X 7
FAc R B A 7 B B 2 X,
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