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Effects of Different Precipitation on Root and Leaf Functional Traits

of Plants in Inner Mongolia Temperate Steppe

XIA Lei, JI Hui, ZHANG Jiayi, HAN Fei, GAO Jianfei, LIU Bitao”
(College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China)

Abstract: Plants can adjust changes in leaf or root function to adapt to climate change and to form a diversi-
ty of environmental adaptation strategies. The study focused on steppe communities with different precipi-
tation in temperate steppe of Inner Mongolia (the steppe of Duolun, which is wetter, and the steppe of
Zhengxiangbaiqi, which is drier), the root functional traits (root diameter, specific root length and root

tissue density) and leaf functional traits (leaf area, specific leaf area, leaf dry matter content, leaf carbon
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content and leaf nitrogen content) of community dominant species from two steppe communities (20 spe-
cies in Duolun and 13 species in Zhengxiangbaiqi) and eight common species (8 species) were measured,
respectively, by analyzing the variation of root and leaf traits and their relationships, to study on adapta-
tion strategies of grass species to different precipitation environments. It provides theoretical basis for the
selection of grass species and grassland management in different precipitation regions. The results showed
that: (1) with the change of precipitation, there was no significant difference in root traits between the
two communities, the specific leaf area of grassland plants in Duolun is significantly higher than that in
Zhengxiangbaiqi. The leaf dry matter content and leaf carbon content showed the opposite trend. The
monocotyledonous grasses of the two grassland communities had the smallest root diameter and the largest
root length, the leaf dry matter content was the highest. The root tissue density of monocotyledonous lili-
aceae is the smallest and leaf dry matter content and leaf nitrogen content were the lowest. Dicotyledonous
non-grass plants have the highest root tissue density, the specific leaf area was the highest and the leaf area
was the lowest. (2) As precipitation decreases, the leaf area and specific leaf area of the common species of
the two communities decreased, leaf dry matter content and leaf carbon content increased. Among them,
the diameter of Leymus chinensis, Agropyron cristatum and Cleistogenes squarrosa increased, specific
root length and root tissue density decreased, the diameter and specific root length of Artemisia scoparia
showed the opposite trend. The leaf nitrogen content of Cleistogenes squarrosa, Leymus chinensis and A.
scoparia increased, and the leaf nitrogen content of A. cristatum and Stipa krylovii decreased. (3) Prin-
cipal component analysis shows that, there is little correlation between root and leaf traits in single steppe
or integrated steppe. The results showed that the root traits of monocotyledonous grasses were significant-
ly different in precipitation, while that of dicotyledonous non-grasses were almost unchanged. The effect
of drought on leaf traits was greater than that on root traits. Under different precipitation conditions,
grassland plant roots have unique ways of resource acquisition, the adaptation strategies of root and leaf
traits to environmental changes were independent.

Key words: morphological traits; intraspecific and interspecific variation; species groups; coexistence spe-

cies; environmental adaptation strategies
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1.3 HiBELBEELSH TEFE YA MR B S AR S R IR AR
JH SPSS 23. 0 (SPSS Inc. , Chicago, IL, USA) W7 31 Cone-way ANOVA) 45 51l He 488 [/ —#il 4y M

A IR PE ST A e i B 2 FIE AP R AARIEPIA RS A 22 57 . ) R BF (R 4.0.5)

x1

TRARHDHERER

Table 1 The basic information of the species in this study
b X L/ B4 ERE ik
Site Species Family Cotyledon type Plant type
Z1& DL WP E W Carex korshinskyi P E Rl Cyperaceae Bif- 1+ Monocots RE X Grasses
21 DL ¥ Leymus chinensis ARAEl Gramineae A1 Monocots ARHEZH Grasses
Z1& DL JKE Agropyron cristatum ARAFE Gramineae B Monocots RHELZE Grasses
Z1& DL #& 8 F & Cleistogenes squarrosa AAEL Gramineae {1 Monocots REJ Grasses
Z1& DL B Achnatherum sibiricum ARAFL Gramineae PiF 1 Monocots ARHEZ Grasses
Z 1t DL 52 [K ¥t 3F Stipa krylovii RABL Gramineae FiF 1 Monocots RFHZE Grasses
%18 DL KA Allium neriniflorum B4 F Liliaceae P Monocots B AR Lilies
%1 DL W13k Allium senescens HAF Liliaceae Hi-F I Monocots B AR Lilies
Z{& DL LR # Allium polyrhizum A4 #F Liliaceae Bt Monocots 5 A FF Lilies
Z1& DL ¥ EE Artemisia scoparia R} Asteraceae X F- 1 Dicots JER#2 Forbs
£Z & DL W% % Chamaerhodos erecta W %R} Rosaceae BF I Dicots R 7L Forbs
£t DL Fal R Z& H0GEAE Aster altaicus % F} Asteraceae XLt Dicots R 7 Forbs
%1 DL 878 & Melissitus ruthenicus . F} Leguminosae X F 1 Dicots AERF 2 Forbs
Z£1¢ DL BRI Potentilla acaulis % Ft Rosaceae MF I Dicots AR H 2 Forbs
Z1{& DL Z TR Potentilla multifida % %Pl Rosaceae XLFHt Dicots JEREJ Forbs
%18 DL Wi Artemisia frigida 25 F} Asteraceae XF- 1 Dicots JER i Forbs
Z1& DL WK T Lespedeza bicolor S8} Leguminosae X F 1 Dicots JERF 2 Forbs
Z1& DL BT % 3E Potentilla tanacetifolia W Bl Rosaceae WF I Dicots AEAR K2 Forbs
Z1& DL W FEFAR Thalictrum petaloideum FEE R Ranunculaceae XLF 1 Dicots JER B2 Forbs
%£1& DL £ 5 B Cymbaria daurica Z 28} Scrophulariaceae XF It Dicots AE R Forbs
1 ZB 2 Leymus chinensis ARAFR} Gramineae BiF 1 Monocots KFHZE Grasses
IEH ZB JKE Agropyron cristatum AAFL Gramineae B f-I Monocots AR Grasses
1 ZB #& [ F & Cleistogenes squarrosa AZA&EL Gramineae Bif- 1+ Monocots RE X Grasses
1FH ZB 52 K §t3F Stipa krylovii ARARL Gramineae Bif- 1+ Monocots KFZ Grasses
IEF ZB i J8 5 Eragrostis pilosa AAFL Gramineae P Monocots AFHH Grasses
IEH ZB % R& Allium polyrhizum B4 FF Liliaceae Bif- 1 Monocots B AR Lilies
1EH ZB KIT4& Asparagus cochinchinensis H4AFF Liliaceae Bt Monocots HAFFE Lilies
1EH ZB it Neopallasia pectinata 24 R} Asteraceae BF I Dicots JER H 2 Forbs
FH ZB ¥ EE Artemisia scoparia % PBl Asteraceae X F 1 Dicots AERF 2 Forbs
IEH ZB R 18 & Melissitus ruthenicus B} Leguminosae W1 Dicots R ¥ 2 Forbs
1EH ZB B Ceratoides latens # R} Chenopodiaceae BF 1 Dicots JER 2 Forbs
EH ZB RIKBEAE Convolvulus am mannii JEAER} Convolvulaceae W FM Dicots R FI Forbs
1EH ZB %5 B E Cymbaria daurica %% F} Scrophulariaceae X F 1 Dicots JERE 2 Forbs

T 2 RIR SRR ; 1IE A R I8 PRI R[] . ML B A Sy A4S B SRR 9% 11 3L A
Note: DL means Duolun steppe; ZB means Zhengxiangbaiqi steppe; the same as below. The bold indicates common species of the two

grassland communities
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. P <T0.01; %xx
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Bl1 ZARFNIE R AR PR Y 22 Al

*, P <T0.05; %x. P <C0.01; %xx,
Fig. 1

P << 0.001; ns. P > 0.05, the same as below

Changes in root and leaf traits in Duolun and Zhengbai steppe
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The data in the figure is mean & standard error; The different normal letters indicated that there were significant

differences in root and leaf traits among the three plant groups

Fig. 2 Changes of root and leaf traits in three plant groups
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