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Advances in Potassium Carriers to Salt Stress in Rice
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University, Foshan, Guangdong 528000, China)

Abstract: Rice is one of the world's major food crops. With increasing salinization in planting areas, grain
yield and security have been seriously threatened. High salinity in the soil causes excessive accumulation of
Na" and K/Na imbalance in cells, resulting in ion toxicity and osmotic stress. A series of adaptive mecha-
nisms have been evolved in rice to alleviate the growth inhibition caused by salt stress, including the up-
take or transport of K* and compartmentalization or expulsion of Na~ by potassium carriers. The family
of potassium carriers mediating these processes in rice can be divided into five families: Shaker, TPK,
KT/HAK/KUP, HKT and CPA. This paper reviews recent work on the functions and regulation mecha-
nisms of the potassium carriers in rice in response to salt stress and discusses the future perspectives of research.
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I s iR mE FREY, S5k
1) #1322k R 1T 13 25 8 Shaker, TPKs (tandem-
pore K" channels). KT/HAK/KUP (K’ trans-
porter/high-affinity K* transporter/K" uptake
transporter) , HKT Chigh-affinity potassium trans-
porter) Fll CPAs ( monovalent cation/proton anti-
porters) ., AN SCHL/KFEE 5% i3 AR AE L g &4 F
RIERIREAE LA S BB R AT 1 2838, JF X R
HRMFFEHT T LU B, Dy 55 5 W 3k i 7 i K e il b
P AL A AR

2 KBz i A Xk R A A e 1 K
Feit £5 2 fig

2.1 Shaker i#i&

o SER A Y Shaker 81 8 F#BEH 4
SR, A B HAT 6 AN B XA 1 A4S C-K i
JL P DX B 4 AR X b R sz R R A6 AR Ak Y
T HAL i 2 BRI B 3T 45 L E TR S O L 5 5.6 B

L IX. ] B B bR 45 46 (P-loop) 4, % 25 BE 15 5F B 4 5 0%
5, fifi 6 B A K s . Shaker #1755 138
TH LA R T S R TR T4 T O, R A R AR
K KB G2 2 1 J7 i itk — 25 R0 4y Sy Dy 2 R

THE A (IR VA AR K3l i (OR) | 55 % 3 4l
K 5@ (WR)

WS &0, N A K@i OsAKT1 fY#
WAL A AE R W3l TR BE R R KT R &
WA OsAKT2 A5 K™ 76 ) i 3 4% 5 fn 1 4
i A B F4ERE Na' (K RS IR il AR 38 X Na'
Mg, P R KT @ OsKATL Fl Os-
KAT2 t.Z 5 & i i 2. OsKATL HA K
K" KA Na'™ /9 1E L, BE % 42 = 2 BF R K R 40 i
T ERME ) OsKAT2 ZEAR A0 K W i v %
FEAE FOE 8 W LI Ok 2 5K R m R .
SR K@ OsK5. 2(OsGORK) 7 i [
SRS S N R s A (SO I L e v Y ) S
S LM AERT KRB EE . 5A
FERI, OsK5. 2 Z 535 AL CH, [ EHE K #
A AT DAL T KRS R
2.2 TPK i@

N[ F Shaker £ 2§ 38 i , TPK WAL # & 1
M TE AW A 4 A X B 2 SRR 25
(P-loop) , i A& HXT H FE A8 A6 JF AN B0, (H 2 F 2
RS AR S T A0, R B TR RE X K B A
PEFEME . KA TPK 7 3 44 i bt : OsTPKa,OsT-
PKb,OsTPKc“ (£ 1),

*1 KEHBETEE

Table 1 Potassium channels in rice

H K 4 B FH 1D R H g Sk
Gene name Genomic locus Expression position Protein Function Reference
WOR K /MG ML) 25 0 F FUBM RS KM, Z3E M iE S ERE. AR RE K RIK The
OsAKTI LOC_0s01g45990 *ﬁ Root  ( epidermis/vascular  plasma membrane inward rectifying K channel. which is induced by [8.12]
tissue) , stems. leaf. pollen salt stress, is responsible for root K absorption
s e JRIBEPY 1) B 00 K0 A2 R I V3 R A K B W AR S
W CRE RE /) L 25 B R Bt 445 Na™ K (04 The plasma membrane inward rectifying K chan-
OsAKT2 LOC_0s05g35410  Leaf (flag leaf/sheath), stem, TERE plasma o ard rectilymg I [13]
glume, root nel, induced by salt stress, mediates the loading and redistribution of K phlo-
em, and maintains the balance of Na™ and K
OKATI  LOC Osolgsszoo 2 MTULTREL Almostno N 3/ 1 K il 4 KT JSHHE Na The inward rectifying 11
expression in stem and root K" channel mediates the absorption of K* and the expulsion of Na
Ml R H F K OB AN PR K A SR TR K R Y AL T R K R T
OsKAT2 LOC_Os01g11250  Expressed in all parts of the o= #h# The inward rectified K channel mediates the K™ absorption of guard [15-17]
ver ground (guard cell) cells and regulates stomatal opening to improve salt tolerance of rice
MR R KT A2 AR A S Ak B AR R KT LR
OsK5. 2 LOC_Os06g14030 (LR V|1 []|; . M Leal, in-  fLEMH . HHF K™ U’J?kﬂi‘%ﬁﬁﬂiﬁ 'l“he‘ outwa{dfrectifying K" channel, in- [18-20]
ternode, leaf sheath, root duced by salt stress, retained K in seedling roots, regulates stomatal
closure and mediates xylem offloading of K*
S . XUAL A B T30 T L FR A Na ™ 9 BURIR A I KR8 0E L g £ it 5%
. 211 i e 6 9940 (L _ytic vacu- . . t
OsTPKa LOC_0s03g54100 OTGHEﬁJ R (LV) Lytic vacu Pt Two-pore potassium channels, overexpression OsTPKa reduces Na [21.24-25]
accumulation and promotes K* transport, increasing salt tolerance
, . . KL A0 B T3 38 L i R A Na ™ RO BOFAE HE KT 5432 . 40 38 i 5%
. o LE W (SV) S
OsTPKb LOC_0s07g01810 AVBY R A7 R (SV) Small £ Two-pore potassium channels, overexpression OsTPKb reduces Na™  [21,24-25]

protein storage vacuole (SV)

. + . .
accumulation and promotes K transport, increasing salt tolerance
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OsTPKa 1 OsTPKb 43l 22 137 T 40 #1517
ML CLVs) RN R A% A7 (SVs) B2 ot &
ik OsTPKa M1 OsTPKb /> Na' BLEIFfEF K©
iz UL H MY B 7 AR A, 1Y 9 0T R e A
T
2.3 KIT/HAK/KUP #is{f
HAK ZEAEAE Y K 85 5% 3% 38 b 93 1
B A ST RIIZE AR EEA 10~14 4~
PSR IX, HAESS 2 IS 3 B X Z WAL & 1 A4S FRAR
ZERU . KR HAK KA 27 A5, ol g ki)
YR AANFEN PR LB R RN,
W T N o KT B m R A BRI 0 1
G FN T BE 25 S5 A AR 1L A IV 1% Ty BE e AiF £ A Hit
WL KR HAK Bz kA S K B Wl 12 i
Na' B4 2), K% OsHAK B335 Z K40 Al

;%S OsHAKL, OsHAKS F1 OsHAKI6 i
IEARHE KA W ok 4 R A AR N B i K/ Na
0, OsHAK3 Ff1 OsHAK21 X 8 45 i 5t i
Na /K'BaBsEREE Y, OsHAKS /5 K’ 1%
WSO 32 AR X {IG B a6 T kT e A T i — 2B
557, OsHAKI10., OsHAK12 ., OsHAK17 #l
OsHAKI18 Z %k i85 5 % 35, OsHAKILO0 A 34
Zith Na® g 257, OsHAK12 B A Na' B35
P, 2 5T Na ™ B9 RIS I AR b 38 Na ™ &%
#, 0OsHAK17 f1 OsHAK18 [7] B Z (% 41 i &,
BAE#ESS K Wik 25 K K8 K5
B M ES L B Ah, HE s OsHAK #% 32 fR 4 F
TH & A BT, OsHAKY A S B ia & #h 785 &
i Na® K" i, OsHAK21 2 588 F K
AR AL, I 75 Bl B & R4l i B 7 b R AR

xR2

k& KT/HAK/KUP %% iz {fk

Table 2 KT/HAK/KUP transporters in rice

E LSRN HH 1D FIRAR AL HHIAE Sk
Gene name Genomic locus Expression position Protein Function Reference
T AN G5 U R AR B B0 B A S K Wl S dhiE . B2 A R
OsHAK1 LOC_0s04g32920 i} (_2@ J)'L/G/} 4 é’ﬂ 41, % Root  ffS3&ik, 1 .le] K/Na Fb High a[.[inity Eotassium. transporters, induced [29]
(epidermis/meristem) , stem by low and high potassium, mediate K~ absorption and transport. In-
duced by salt stress, K/Na ratio was increased
B R A SR R R K W RIS, W
OsHAKS3 LOC_0s01g27170 EQJ'{'Z%‘\“*%\EF'}JF S 4EFF Na ,/}.(} fa & High aff»inity potassium:ransport?rs, in- [33]
oot, anther, leaf, stem, glume duced by low potassium, are responsible for root K" absorption and
transport. Induced by salt stress, Na' /K~ homeostasis was maintained
HRCHREE /AL /AR IR FE R SRR IS R AR AR A S ek B R K Wk B RS
OsHAKS LOC_0s01g70490 ézi\ﬁ‘?\ﬁ‘/ﬁ Root (epidermis/ 1‘%’1][? K/Na [t High affinity potassium. transporters, induced by llow po- [30]
mesocolumn/lateral root), leaf, tassium and salt stress, are responsible for root K absorption and
embryo, anther, seed, seed shell transport, K/Na ratio was increased
e - RS A AR AR R K IR R KT W & 02 High af-
OsHAKS LOC_0Os03g21890 +ﬂ LM A2 BT Root, finity potassium transporters, induced by low potassium, are responsible [36]
stem, leaf, anther, glume T .
for root K absorption and transport
A RSB L B s A O L Na K i P
OsHAKY9 LOC_0s07g48130 High affinity potassium transporter, induced by salt stress, regulates [42]
seed germination and Na~ , K ' balance
R MR R Z i S Rk R FEE b Na ' (LR High af-
OsHAKI10  LOC_Os06g42030 finity potassium transporters, induced by salt stress, promote Na = ac- [37]
cumulation in old leaves
B R E U Na ™ AT B 2 4 L V8 5 403 A S L Na
- 5w . F R A B i A Na ™ T2 B Y 52 R Wil 5 3 3k A # Na
OsHAK12  LOC_0s08g10550 f?e*m 1‘ ieejf-: ﬁtir‘f’élfmfo‘” B9 HER: High affinity potassium transporter. Na permeable. induced by [38]
salt stress, mediates aboveground Na ' exclusion
MRGRH 25 (48 (it ik / Ei%ﬂ%‘lii‘%@f CZ RO AR SR ATR R KL 4R K
. V20272 #i4%) Root (epidermis), stem  fax High affinity potassium transporters, induced by salt stress and -
OsHAKIG6  LOC_Os03g37840 (vascular), leal (mesophyll/  low potassium, are responsible for K" absorption and maintenance of [31-32]
vascular) K" homeostasis in roots
MO AD IR 2R ORZEEE AL RERE AL R, 2 RAT AR N0 S R IA LB 5 K A A E
OsHAK17  LOC_0s09g27580 (fﬂ: 1"1“;-,""/13} ﬁ) 45 Leal (meso-  F4rMd. High afﬁnit‘y.potas.sium tral}rsporters, induced l.>y lgw 1.)0ta.ssium [39]
phylD . leaf sheath, stem, root  and salt stress, participate in the K transport andredistribution in the
junction (vascular/phloem) s etc  ghoot.
B D R 2R 45 G b kB ROR R IR SR a RER RO BT K AR ) B A e A
OsHAKIS 5o JEE l%tﬁ 3"; Root (_middlc M b3 K ' 943 BE High affinity potassium transporters, induced by salt [40-41]
column) . junction of r_hl%omc. stress and low potassium. are responsible for K loading and redistribu-
leaf, glume, stamen. pistil. etc  ion in shoot
B RN LR R AR SR T KT R R R . R0 i
S feik K0l i Na /KT RZS I RD T8 & B 4h kK High
OsHAK21 LOC_0s03g37930 M4 4 4 218 B B Root and  affinity potassium transporters, induced by low potassium, are responsi- [34-35,43]

other tissues and organs

ble for K absorption and transport. Induced by salt stress, it promoted
K" absorption, maintained Na" /K" homeostasis. regulated seed ger-
mination and seedling growth
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2.4 HKT ®#izik

HKT J&—2& Na” 8{ K" #£ia k8 Na” (K™ Ik
¥z fk, i1 4 ©~ MPM (membrane-pore-membrane
motiD) &SP L AL, B AP B 2 DB IX A 1 AN FR
G5 (P-loop) M . HKT Y B 1~ 1 45 Mk 1 3
F S — FODR 45 4 A0 O <7 S L R v P e 2t A
RICAE KR RS 9 4 HKT 3K AR5 k1L %
Zal Koy 2 AN,

1% OsHKT #4352 {4 32 22 7 A F A J5it 8 18 B 41
JL A RS . L AT Na ™ e (36 3). OsHKT1;1
M OsHKTL ;4 38 i B 1% 1) Bz &6 35 A 53 38 71 i
Na' ¥ BRI e 138 78, OsHKT1;:5
P AR TS P Y Na ™ 0 3% 25 B 240 M [ 2 ok K
li) b 358 32 B R 4 FF Na ™ A KB 57 . Os-
HKT1;3 5 OsHKT1;5 #0] 78 # 38 T~ 4 i Ff 1
i R K A B AR KT T 26 OsHKT #5353 A |
Xt Na' K" #5 B A %8035, 76 48 75 K R
Na /K B REMEMGE 3, OsHKT2;1 /%
Na' (3K A LAAb 78 S48 30 iF K i i 2k, {3 3t
Na ' (15 e B fil 1T ol 6 Joh 36 70 9 405 OsH-
KT2;2 AR &0 T A S Na' (W, B i A K©
WP I, Na ™ #32  R Y. OsHKT2;4 B
Bk K B &EM . & Na #E T OsHKT2:4 4
S Na' ez itz R

2.5 CPA Bizfk

Y CPA % EEALHE 3 K NHX(Na' /
H' exchanger). CHX (cation/H' exchanger) #
KEA(K" efflux antiporter), ., NHX % 7E fif
TR B NIRA . NHX — & fH 10~12
ALK, 5 8 X 2 ) A A0 B PR 2540 . NHX
REASHEIL H' 5 Na' Fl/8 K1 25 B8 46, Xt &6 1y
WY AN pH FHF B TREELE
T KRR AT 5 AN N RS NHX $ iz 1k R
PEHEAL R, 0528 2 A4, OsNHX1-OsNHX4
R — A, AL TR, OsNHX5 Ry 5% 41,
SENL T BT,

W5 F W, OsNHX1 ,OsNHX2 ,OsNHX3 Fl
OsNHX5 ¥z it i 53235, S A6 40 i 5 b iy
Na " X b Ak 28 i i P sl HL At 1X 25 P 46 43 i 5 9 8 1
A > Na©™ B9 37 6 OsNHX2, OsNHX3
(0 E— 2L 1 5% & B 3L 32 B3 b o Na o i 17 2 0k
VLR 240 bR AR K R A TR 3R 70T OsNHXG #Y
TRE5 5 HAth i 51 s A AR TR, B A K Na ' §59z,
KCl Ab3 T HAE 5K F T, #E0 OsNHXS B K/
H' 224 /R JH . OsSOS1 2 Bl sE i Na™ /H*
S IV ia A, Fh ppan N R B IRIEE L OsCBLA-Os-
CIPK24-OsSOS1 i 423806 » M2 1 Na ™ SNk F#A% 41
P Na ™ &5 8 S5 KR R IR ER e

&R 3 IkIE HKT #izk

Table 3

HKT transporters in rice

FEH 2 TR

Gene name

A 1D

Genomic locus

Fak AL

Expression position

BERIN SCHR

Protein Function Reference

I CHEAE AL 20 AR Crbi /i BE 4R
f8) Leaf (vascular tissue) , root
( medium  column/parenchyma

OsHKTI;1 LOC_0Os04g51820

W R 7 40 S AL R Na ) M B R A GE L AR B Na T BB

High affinity potassium transporter regulates the transport of Na' to [49-50]

celD the overground part and reduces the accumulation of Na ' in leaves

OsHKTI;3 LOC_0s02g07830

MLZE () Root, stem,

OsHKTI;4 LOC_0Os04g51830 leal (leafl sheath)

5 2 RN A B0 e B AL R 4 Bh 1 B & K 4 B A K High affinity potassium

transporter, regulates seed germination and seedling growth

[55-57]

SR D 0 U R M T Na R b gk Na T B

High affinity potassium transporter controls the concentration of Na© in

[51-52]

xylem SAP and reduces the accumulation of Na = in young leaves

R B K T Na ™ SR AR JE K i 2 1 0 40 T 45, 8

i Jp 380 X6 b 1l & R4l # AR K B 3 il High affinity potassium trans-

porter, xylem Na' unloading. promote K transport, maintain sodium[53-54, 56-57]
and potassium balance. relieve salt stress on seed germination and seed-

ling growth inhibition

R COR 78 L Y 797 B 40 L) Root

(parenchyma cell on xylem)

OsHKTI ; LOC_0s01g20160

w

B R B A RAD S Na " WAL SR 0 A0 Na T B HL High af-
finity potassium transporter, low potassium induced Na ' uptake, salt
stress inhibited Na' uptake

WO Z/W K JZ) Root (cor-

OsHKT2;1 LOC_0Os06g48810 tex/ endocortex)

[58-60]

R A SR Na T KT BB AR B S Na Ml High affinity
OsHKT2 ;2 potassium transporter, Na' , K~ selectivity, low potassium induced [61]

+ .
Na ' absorption

BRI A R L KT BB A S KT R, BRI Na ™ #6358 High

affinity potassium transporter with high K~ permeability mediates K

25 W) E AR MR Leaf,

stem. primary root. lateral root

OsHKT2;4 LOC_0s06g48800 [62-64]

: +
absorption and reduces Na ' transport
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3 JKAEIZ fa AR AE ER B A R AR
PLI

3.1 BREE

B SR R 4 R R W R 6 AR A W B aE R O BT
BeUY RGOS R R 2 0 R R e e S R
% .4 bHLH . WRKY . MYB.NAC &7, H x| 8 i3
AR B — 2 IR EAER (K D, OsMYB106
(MYB Al 5 F) . OsBAGA (4> FAEAB M E 1D
1 OsSUVH7(DNA H AL U i) = & AH 5. AE H
M E &Y AL OsMYB106 5 OsHKTI ;5 Wiy
=25 & e MYBE 254, #10% OsHKT1;5 M3
508> Na ™ 7E i 593 B BRY . OsGTy-2 (tri-
helix transcription factor, = B i€ 5 5 N T K &
GTy WKIEM ) 52 £h W30 8 35 W 36 K A Ak b 38
BREIK T EY OsGTy-2 H#ES OsNHXI ,
OsHKTI;3 M OsHKT2; 1 #5331 F# 5 AF I
1E 1 9 95 K R i R PEY T . OsNACS (NAC #9555
A7) IE [ 47 OsHKT1;4 f1 OsHKT1;5 £
5 K R T 6 e 7 5 #2 T, OsbHLHO01 (bHLH &

BRI M R SR LS A OsAK T J 8 71X Y
E-box F4,i%S OsAKT1 B2k ek K A M
17 94 5 R B3t KRS R AR L. OsbHLHO035
WS OsHKT1 33 f1OsHK T ;5 f3Eik , 8
38 )5 B R TR R A K E Y . OsJAZ9(Os-
TIFY1la, TIFY B% 52 ) e 5 OsbHLHO062
A EAE R I H OsbHLHO062 4+ S A% OsHAK21
MOsHAK27 558305 . N1 OsbZIP72 &
25 OsHKTI1 ;1 Jish F X3k i ABA W o6 {4
55 A OsHK T 5 1 (94236 LW R 56 5, Os-
bZIP71 BE % 5 OsNHX1 B 3 7 45 &, 12 i
OsNHX1 3k . 38 KRG if £h
3.2 ENFREBIMG

T 1B 5 16 X K R e Rz ER a3 6
BRI B R AL 2 R A SR T BT ey 24
20 0 34 A P R TG P L T R N RE A LA AN R R
V1) B4 R EL A D o DA DB 3 3 A 0

R A2 I WL AB 1 JE 5 CBL-CIPK M 4% £
TR ERE Y Ca®' F 5 M Na™ /K RS i
o R (| D

i / l l’ l // \ / \
[ossUVH? | (0MYBI06 | 0sMYBe ||| 0:NAC3 0sGTy2 OsbHLH001 OSbHLHOG2 |— OsJAZ9  OshHLHO3S O:bZIPTL  OsbZIPT2
\L r v 1 r \ l ,J;\ ,J_\ l/ \l'
OsHKTI:S OsHKT1;1 OsHKTI;4 OsHKTI:S ~OsNHXI  OsHKTI;3 OsHKIZ1  OsAKTI  OsHAK2I — OsHAK2? OsHKTI;3 OsHKTI;S — OsNHXI  OsHKTE:1
L J
VI DTS RN
Potassium carriers in rice
[ 1
0s5081 0sAKT1 OsHKT2;1 OsHKTI;S OsHKT2;1 O:sHAK21 OsHKT2;1
L — . S i
OsCBL4 - OsCIPK24 OsCBL1 - OsCIPK23 |0sspG721 o G o e
\ / OsPRR73 ,
i T
BER(L R !
Phosphorylation Ubiquitination Hith/=,
Other means

\\

/>

Salt Stress

Wb B I S A e R T 360 7K RS 08 B R 0 & AR KRR SRR T (TF)MYB.GTy .bHLH \bZIP
XoF B3 i 2R A P B ST R 5 W R Ak 32 R AR AR Ty SO A2 i A A T v B A A
Bl 1 KAEEP S gk ik 2z i 07 X

Involved in the activation or regulation of rice potassium carriers in response to salt stress. Transcriptional regulation

of rice transcription factors (TF) MYB, Gt-y, bHLH and bZIP on potassium. carriers. Regulation of potassium

carriers activity by phosphorylation and ubiquitination.

Fig. 1 Regulated modes of potassium carriers in rice

SOSfE 5 MY T ENERS ALY
W E S it KR SOS @feh . 545 5

1 OsSOS3/OsCBLA & 1 Wi 31 B 57 45 (5
5L 5E MM 0sSOS2/0sCIPK24 H AR I B2 1L
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OsSOS2., Wi R 1k 5 i OsSOS2 & [ ik 5 i 15 5E
B2 OsSOST 25 4 JF 8 Ho s i 9F Na ™ HEH, 4
Framfeh B 740 . A SR an 51 & A N
Ca* WREEFHE .15 OsCBL1 #il OsCIPK23 H4E I 4
I OsCIPK23, JE iU &2 & VI R AL s OsAKTI Y
A T AR K i

12 F B E A W R I b ke o AR (A
D, E3 ¥ 5210 38 o o A8 1 38om 8 EHCan sk A
T MR PR K HE IR T A T AT BICAE T U S 0
L B R R A B T MR P, iz R
26S & FIBFAR A 5 14 Eh AH OC B 11 B i A6 i 26 1 vh &
HERBEINEEDY . HEIRIE L RING B E3 %1 8§ Os-
SIRH2-14 7 & #h 4 T 5 OsHKT2;1 75 ifg it Al
FREE Ik A SR B ) BRAE L OF vz R 26S B
W A [ fft OsHKT25 1 A Z> Na™ 9 4™ . Os-
MYBc 65 OsHKT1;1 J5 3h 7456 Ly s v,
1E 1 45 K RS ARG R PESS L RING B E3 5% #2 B
OsMSRFP i i1 7 & 26S & 1A+ § OsMYBe
R AR IF 055 OsMYBe X OsHKT1 ;1 #9%% 5% 4 545
AR OsHKTI ;1 (31,
3.3 HMEEFE

B 1 R B K ) 1 R 4 T B, — S B IS i Ak T
55 A B (1 22 187 A2 A BRIk 58 R 38 26
B F S WA DR 3R Gk DL RO A Kk B IR
AR D, BF5E &, 72 138 T, OsSDGT721
(SET domaing group, B A 4 & H i & R H FL 5 %
B G PERYE P EE 45 & OsHKT1 55 W 8 7 IX
B, B OsHKTIL ;5 W35 4R M K (Na £
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