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Abstract: In this study, the differentially expressed sequence ES816317 was cloned based on the differenti-
al expression sequence results of the low phosphorus stress gene expression profile chip in the roots of Gos-
sypium hirsutum 1. and the genome database. We used bioinformatics methods to analyze its nucleotide
and protein. Its tissue expression pattern and relative expression under low phosphorus stress were detec-
ted by using qRT-PCR technology. so as to lay the foundation for analyzing the biological function of GhC-
SN6A in G. hirsutum and provide genetic resources for cotton phosphorus efficient genetic engineering
breeding. The results showed that: (1) GhCSN6A gene of G. hirsutum L. was successfully cloned, and
the full length of the open reading frame of the gene was 948 bp, encoding 315 amino acids. GhCSN6A
protein, called COP9 signalosome complex subunit 6a, belonged to the MOV34 protein superfamily, had

an MPN_CSN6 domain, and was localized in the nucleus. (2) Sequence alignment and evolution analysis
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showed that the similarity of GRCSN6A to HsCSN6A and AtCSN6A was 95.87% and 84.54% , respec-
tively, so the gene was named GRCSN6A. (3) qRT-PCR analysis showed that GRCSN6A was expressed

in all tested tissue including root, stem, leafl and flower, and the expression level was the highest in leaf,

but there was no significant difference between leaf and root. The relative expression of GRCSN6A gene

was the lowest in the root treated with low phosphorus for 24 h. However, the highest in the root treated

with low phosphorus for 72 h, which was twice that of the suitable phosphorus (control) treatment. The

study has speculated that GRCSNG6A gene played an important role in the response to low phosphorus

stress in G. hirsutum.
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Table 1 Application of primers in the experiment

514 4 F Primer name

2| F %) Primer sequence(5'—3") FH#& Use

GhCSNGA-1F
GhCSNG6A-1R

CAAAAGCATCGAGTAGGG
TGGGCAACATGATCCACAGA

GhCSN6A-2F TCTGTGGATCATGTTGCC
GhCSNGA-2R ATCACCATTCTCCCCAAC S e
GhCSNGA-F GGAAGGAAAATCAAGCAAA Gene cloning
GhCSNGA-R TTTTGCAGGCAAGGTAAGG

MI13-F TGTAAAACGACGGCCAGT

Mi13-R CAGGAAACAGCTATGACC

GhActin-F ATCCTCCGTCTTGACCTTG

GhActin-R TGTCCGTCAGGCAACTCAT

qGhCSNG6A-F
qGhCSNG6A-R

qRT-PCR
GACTGGAATTTACATTTGTCGTTT

ACCTCCGCCTGCTCCAAT
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Fig. 3 Phylogenetic tree constructed based on amino acid sequences of GhCSN6A and
Arabidopsis thaliana AtCSN protein
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Fig. 4 Multiple alignment results of amino acid sequences between GhCSN6A protein

and homologous proteins

Gk B AW, 2R E S RWH,AFED RN
GhCSN6A EH 4R 2 K43 3¢, Ho fili Wi GhC-
SN6A 5 78 [/ — 4> 3 I B9 3 Y A8 CSN6A | A f#
CSNG6A 3% CSN6A Fl8F 1 L 7 4 28 CSN6A 3
2.5 GhCSN6A EFE7E AR H LR KR &K B g
SRR RIXEX S

VIARIE R GhActin NS, FIH qRT-PCR
FARK M GRCSN6A FERFER (ZE  of FIAESF 4 4
HA P FRBEO, 458 (K 6) B/R,GhRCSNEA 3
PRIAEAR (25 i FIAE h 4G 336, 7E M v i Rk & A
mLBERTASETNRSE, HIREAEMR PR

BERE, SEPNELR LR EER AP HE
IR IR AR (P <C0. 05) W il b A 35 ke A 0 6 47 AR 95
38, DAAS ] Ak 35S (] %) Bl A AR 350 26 23 4 L 2
1T qRT-PCR, 43 #F GRCSNG6A & [H mi i {i% 5 iy 38
TG oL . S5 (K DR ARBEL I 0.4.12 A1 24 h
12 R A 2Rk B L[R]30 58 ol Ak B 2 Ak AR, (IR
AR 72 h BPH R R R HGE B AL 72 h B9 R A R
L EE ALY 2 f5. GhCSNGA 3[R 78 A% 1
H0~72 h By SR S Ry AR R IR TR 0~4
h N L FE 4~24 h N—A 388 1K (4 h) BETE
B =D ERARKE (24 b LBRIETE 72 h BF X 3 &
=K



34 (LS - 7/ = - 43 %
_98:5"; Fe% Datura stramonium (MCE0482192)
78 WHE Nicotiana tomentosiformis (XP_009601890)
39 _:21% Ipomoea triloba (XP_031117167)
48 WIHE Ecoffea arabica (XP_027127009)
70 L W Camellia sinensis (XP_028097047)
B 1t Telopea speciosissima (XP_043722177)
1 ﬁEE}WE Juglans regia (XP_018814173)
69 46 B Ziziphus jujuba (XP_015881485)
LT Perilla frutescens var. hirtella (KAH6822843)
624 —— B R% Populus trichocarpa (XP_006378019)
99 b M PG % 55 Hevea brasiliensis (XP_021688157)
E AR Tripterygium wilfordii (XP_038689073)
M= Prosopis alba (XP_02880793)
75:215_ Abrus precatorius (XP_027329149)
99 BIE X Spatholobus suberectus (TKY49877)
98 B E FE Medicago truncatula (XP_013458821)
524 L% Vigna umbellata (XP_047152710)
50 ® Y Mucuna pruriens (RDX87758)
72 AKE Cajanus cajan (XP_020232720)
1 %38 Manihot escuienta (XP_043808641)
AR Carica papaya (XP_021906136)
90 i:ﬂﬂ% Citrus clementina (XP_006452788)
85 01 Citrus sinensis (KAH9652667)
50 K Pistacia vera (XP_031257561)
96 TR Mangifera indica (XP_044472601)
82 BRI Jatropha curcas (XP_012081866)
53 90 B R Ricinus communis (XP_002529210)
61 B Populus alba (XP_034389184)
2R Sesamum indicum (XP_011095664)
1 431':%”’8 tE 4532 Herrania umbratica (XP_021588870)
TEYE Durio zibethinus (XP_022734622)
97 AME Hibiscus syriacus (XP_039028627)
_7i::EE%wmm
93 BN AE Gossypium australe (KAA3452453)
K5 3ETF GhCSN6A 5HABRI YA CSN6A B A& LR IF I 1 R 5 & 7 kb
Fig. 5 Phylogenetic tree constructed based on amino acid sequences of GhCSN6A and CSN6A proteins
in other plants
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