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Response of Antioxidase, Ascorbate-Glutathione Cycle and Glyoxalase System in
Leaves of Pontederia cordata to Lead Exposure

XIN Jianpan, MA Sisi, TIAN Ru’nan”

(College of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, China)

Abstract: To identify the physiological mechanisms in leaves of Pontederia cordata to Pb*" exposure, we
adopted a hydroponic experiment to investigate variations in malonaldehyde (MDA) and chlorophyll con-
tents, antioxidase activity, antioxidant content, and glyoxalase system in the plant leaves with 0—15. 0
mg/L Pb*" concentration exposure. Results showed that, (1) no obvious variations in chlorophyll con-
tent, catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities, ascorbic
acid (AsA), dehydroascorbic acid (DHA) , glutathione (GSH) , non-protein thiol total peptide (NPT) and
phytochelatins (PCs) contents were detected in the plant leaves with 5. 0 mg/L Pb*™ exposure for 14 d and
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21 d; with 5.0 mg/L Pb*" exposure for 21 d, a marked increase in methylglyoxal (MG) but not MDA
content was noticed. (2) With 10.0 mg/L Pb*" exposure for 21 d» MDA, MG, GSH. and NPT contents
and meanwhile POD activity in the leaves markedly increased, and an opposite trend was demonstrated in
monodehydroascorbate content and glyoxalase Il (Gly Il ). (3) With the plants exposed with 15. 0 mg/L
Pb*", MDA content in the leaves significantly increased, and by this time GSH, NPT, PCs were synthe-
sized to chelate excessive Pb*" accumulated in the leaves. And meanwhile, POD, SOD, and APX activities
and AsA content were also stimulated to alleviate oxidative damage induced by Pb’". Glyoxalase system
cannot effectively cope with carbonyl stress induced by the treatment of 15. 0 mg/L Pb*" exposure for 21
d. The leaves of P. cordata exhibited a good tolerance to 5.0 mg/L Pb*" exposure. The stimulated non-
protein thiol compound synthesis, antioxidase activity and AsA content were employed to mitigate oxida-
tive damage induced by Pb*" concentrations no less than 10. 0 mg/L. Glyoxalase system in leaves of Ponte-
deria cordata did not represent an markedly detoxification as expected under the present experimental condition.

Key words: lead stress; Pontederia cordata ; antioxidase activity; ascorbate-glutathione cycle; glyoxalase system
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Fig. 1

Variations in MDA and chlorophyll contents in leaves of P. cordata exposed to various Pb*" concentrations
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