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Low Temperature Induced Expression of SIBRI1 Enhanced
Cold Tolerance of Tomato Seedlings
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Abstract: Brassinosteroids (BRs) is a kind of hormone widely distributed in a variety of plants. Brassinos-
teroid insensitive 1 (BRI1) is the main signal receptor of BR signaling pathway, which plays a crucial role
in plant growth and development and stress response. In this study, we used tomato varieties Micro-Tom
(MT) and SIBRII overexpression plants (Atrd29A :SIBRI1) as experimental materials to investigate the
effects of low temperature on photosynthetic characteristics, chlorophyll fluorescence parameters and cold
resistance genes, in order to reveal the response of SIBRII gene driven by Atrd29A promoter to low tem-
perature stress. The results showed that, (1) low temperature stress increased the expression of SIBRI1
in MT plants, while the expression of SIBRII in Atrd29A :SIBRII plants were higher than that of MT
plants. Low temperature stress for 5 days resulted in wilting of all plants, and Atrd29A :SIBRII plants
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wilted less and recovered better. (2) The net photosynthetic rate (P,), stomatal conductance (G,), tran-
spiration rate (T,), maximum photochemical efficiency of PSIl (F,/F,), actual photochemical efficiency
(Dpsy ) s light capture efficiency (F,'/F,.') and photochemical fluorescence quenching coefficient (¢P) of
all tomato seedlings were significantly decreased under low temperature stress. On the 5th day of low tem-
perature stress, these indexes of SIBRII overexpressing plants were significantly higher than those of MT
plants. Meanwhile, the intercellular CO, concentration (C;) of SIBRII1 overexpression lines was signifi-
cantly lower than that of MT. (3) The expression levels of transgenic plants SIICE1, SICBF1, SICBF3
and SIDRCI7 were significantly increased under the same condition, and the expression levels of SIICE1,
SICBF1, SICBF3 and SIDRCI7 in SIBRI1 transgenic plants after low temperature treatment were signif-
icantly higher than those in MT plants. The results indicated that the expression of SIBRII induced by
Atrd29A could improve the expression of SIBRII , alleviate the effects of low temperature stress on plant
photosynthesis and chlorophyll fluorescence parameters, and enhance the cold resistance of tomato plants.

Key words: tomato; brassinosteroids; Atrd29A promoter; SIBRII ; low temperature; photosynthetic flu-
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Fig. 1 Relative changes of transcription levels of SIBRI1
in tomato seedlings of wild type (MT) and
Atrd29A :SIBRII under low temperature stress
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