PUIbH B 2 % . 2023,43(3) :0374— 0381
Acta Bot. Boreal. -Occident. Sin.

doi:10. 7606/j. issn. 1000-4025. 2023. 03. 0374 http://xbzwxb. alljournal. net

miR156 FEHEFEENN 5 F LT
RiZFHEMR

Z M EQF, I, R, KA R RAE

CRa B R0k K2 el 252 Be - 7 5% 210095)

O ECONWHZEAE miR156 K HHILN CmSPLI1S 61 55 Ml B 25 AR I & T b B9 22 2k B v L IR BF 98 A2 4 < 1
0 kR SR R AR PCR BR Y1 MiR156 J& 3 F ¢ 41, I 43 1% 5 5 5 5 38 5 380 38 R T R 7P L 7K A% g PR
i ER R B NAA) MBI E (T 52 ) A, 53 H1 46 46 miR156 & H AL IE R CmSPL13 X i 38 Fi ik 85 b 38
B I 7 3 38 R AIE 5 I 43 AT RE R AL HE T miR156 SRk R SRR M C R, miR156 B 544K & F 5 5Em
B4 4 T B AT 9% B8 8 JR Al . Z5OR R . (D S BEFRAE T MIR156 J3 311 1 584 bp. % 3h 7 FF 5 40 & i & GRF
FiR K A B R AR K 3 28 R SRR R S A 0 BT b a0 DL B o e R SIS FE e () SRR R AL B R,
miR156 Y RIEKFFE 0~3 h WF 1,3 h J5 B W PR, R 5E LIHE TR MRS CnSPLI3 1%
BEBENTREE LANBEELGTE 12 h Dk B0EE; KR P EE A K E NAA AL T , miR156 fURIA7E 3 h B F T
L5 E W T 7 6~12 h Bk SN L T 5 B W F e {H CmSPLI13 W335 LA 5 2 M0 & (0% PEG 4b 31
T miR156 AR A KFEEMRFABAT. HAE 6~24 h Z W F 8, ALK CnSPLI3 78 6~12 h B3 LM b ab 3
T .miR156 B FEKFAE 0~3 h B2 LE, M5B # MK, CmSPLIS FRIBL 6~12 hiZ# L, (3)miR156 (1
FeIK K- BE 2 35 AL - F R A 3G N T 32 B AR L T CmSPLI3 (YA B E TR . () BEMEAT LU miR156 (i 3%
5 LB RERE AL BE T B E IR P M I N CmFTL3 .CmAPILI F1 CmSOCI By 363K, T AR #8235 48 TF 48 , 48 11 32 1y
2.8 d. WFFEIN KA 4E miR156 K H SO I H CmSPL13 A 2 5 8 ¥ 4 42 W1 a5 4 3091 09 2 6, 3 77 76 B A5 5 90 1l
miR156 [ 2 35 M T AR 3E 46 16 FF A6 0 IS WL s 2 FT R A1 7K A% R 1T A8 78 A0 B0 J5 191 95 b1 95 25 46 miR156 J H ¥
FER B RIE I BRI RES 5 Eh W 3a i 00 R 2,

KB 4G AE s miR156;CmSPLI3 5 Ja shF 5 I & s Bl s Rk Fe ik

FESZEE.Q785; Q7865 Q789 MEKARERD: A

Expression Characteristics of miR156 in Regulating Stress Responses and
Flowering of Chrysanthemum (Chrysanthemum morifolium )
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(College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China)

Abstract: To clarify the expression characteristics of chrysanthemum miR156 and its target gene Cm-
SPL13 in response to stress and growth and development, this study obtained the promoter sequence of
MiR156 by high-fidelity PCR amplification and analyzed the sequence characteristics using chrysanthemum
‘Jinba’ as the plant material. Though hormone (methyl jasmonate, methyl salicylic acid, anxin NAA)

and stress (drought, salt) treatments, the response and expression characteristics of chrysanthemum
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miR156 and the target gene CmSPLI13 to hormone and stress were analyzed. The relationship between
miR156 expression characteristics and flowering time under sucrose treatment was analyzed, which laid a
foundation for the molecular mechanism of miR156 involved in the growth and development of chrysanthe-
mum and response to stress. The results show that: (1) the MiR156 promoter was successfully cloned,
which contains cis-acting elements in response to hormones including jasmonic acid, salicylic acid and aux-
in, anaerobic induction, drought induction and other stresses, light response and so on. (2) Under methyl
jasmonate treatment, the expression level of miR156 was significantly up-regulated from 0 to 3 h, and the
expression level gradually decreased after 3 h, showing a trend of first increasing and then decreasing. The
expression of the target gene CmSPL13 showed a trend of first decreasing and then rising, reaching a peak
at 12 h; under melhyl salicylic acid and auxin NAA treatments, the expression of miR156 decreased signif-
icantly at 3 h, then increased gradually, reached a peak at 6—12 h, and then gradually decreased, the ex-
pression of CmSPL13 has the opposite trend of miR156; under PEG treatment, the expression level of
miR156 was lower than that before treatment, and gradually down-regulated from 6 to 24 h, the target
gene CmSPLI13 was significantly upregulated from 6 to 12 h treatment; under salt treatment, the expres-
sion level of miR156 was significantly up-regulated from 0 to 3 h, and then gradually decreased, the ex-
pression of CmSPL13 was gradually adjusted up from 6 to 12 h. (3) Quantitative real-time PCR analysis
showed that the expression level of miR156 gradually decreased with the increase of chrysanthemum leaf
maturity, however, the expression of CmSPL13 is gradually increasing. (4) Sucrose could inhibit the ex-
pression of miR156, significantly increase the expression of flowering-related genes CmFTL3, CmAPILI
and CmSOCI , and promote the flowering of chrysanthemum. the flowering time in sucrose treated plants
is 2. 8 days earlier than non-treated control. It was suggested that miR156 and its target gene CmSPLI13
were involved in the regulation from infancy to adulthood, and there is also a regulatory mechanism that
sugar signals inhibit the expression of miR156 to promote chrysanthemum flowering; jasmonate and sali-
cylic acid may antagonistically regulate the expression of miR156 and its target genes in chrysanthemum at
the later stage of treatment, and may participate in the early response to salt stress.

Key words: chrysanthemum; miR156; CmSPLI13; promoter; hormones; stress; expression profiles
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Table 1

The primers used in this study

514 Primer J¥ %1 Sequence(5'—3")

JH & Application

promiR156-F
promiR156-R

EFle-F TTTTGGTATCTGGTCCTGGAG
EFle-R CCATTCAAGCGACAGACTCA
 U6F  ATACAGAGAAGATTAGCATGGC |
U6-R GGACCATTTCTCGATTTGTGCG
""""" RT-miRIS6F  GCGGCGGTGACAGAAGAGAGT
RT-miR156-R GCACTGGATACGACGTGCTCA

GTCGTATCCAGTGCAGGGTCCGAGGTAT-

TCGCACTGGATACGACGTGCTC

ATGGGTATTCGCCACCTGGTCGGGT

RT-CmSPL13-F
RT-CmSPL13-R

GCCAAACATTGTACCTACTAACTGTTGGCC
ACTTCTTTTTTTCTTCATGAACAACC

ATGGGTATTCGCCACCTGGTCGGGT

MiR156 Jii 85 F 5o b
Promoter cloning of MiR156

ERNSEIY
qRT-PCR inner reference primer

miR156 25| ¥ € i
qRT-PCR inner reference primer of miR156

miR156 & i 5[4
qRT-PCR primer of miR156

miR156 S5 5519

Reverse transcription primer of miR156

CmSPL13 E 1Y
qRT-PCR primer of CmSPLI13

TGGTTTTTGTGCTATTCCGG

RT-CmFTL3-F

CmFTL3 R34
qRT-PCR primer of CmFTL3

RT-CmFTL3-R TCTCCGTCGTCCACCAAATC

RT-CmSOCI-F GGAGAAGGATTAGGAACCAGCACTAT CmSOCI 5319y
RT-CmSOCI-R TGCGTGTAGTTGTTCAATCTGTTCA aRT-PCR primer of CmSOCI

RT-CmAPIL1-F GAAAGATGGGAAGAGGTAAGGT CmAPILI % B3l
RT-CmAPILI-R GGCTTTCTTCAATAAACCACC qRT-PCR primer of CmAPILI

RT-CmLFY-F TGCTGGTTTCCTCTTTGCAC CmLFY %559

RT-CmLFY-R AAGAACACGTGGGCAACAAA qRT-PCR primer of CmLFY
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M. DL 2000;1—2. Promoter fragment of MiR156
Fig.1 Cloning of MiR156 promoter from

chrysanthemum ¢Jinba’
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CGTCA-motif. cis-acting element involved in the MeJA response; TGA-element. Auxin responsive element; GT1-motif and

Spl. Light responsive element; MBS. MYB binding site involved in drought-inducibility; O,-site. cis-acting regulatory element

involved in zein metabolism regulation; I-box. Part of a light responsive element; TCA-element. cis-acting element involved

in salicylic acid response; ARE. cis-acting regulatory element essential for the anaerobic induction

Fig. 2

Model diagram of cis-acting elements in MiR156 promoter
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* and ** indicate the significance difference between treatment and control (0 h) at 0. 05 and 0. 01, respectively, the same as below

Fig. 3
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Expression of miR156 and CmSPL13 under treatments of different hormones

OCmSPLI3
= 14r ok
E’ 12t s NaCl
WS 10F
Bl _
EL o .
E.g 4r *
= 5L
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Treatment time/h

ANFEE LT miR156 5 CmSPLI3 3£k

Fig. 4 Expression patterns of miR156 and CmSPLI13 under treatments of PEG and NaCl
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BmiR156 DOCmSPLI3
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Relative expression level

1 2 3 4 5 6 7
WL Leaf position

A7 H miR156 il CmSPL13 By £k

Expression level of miR156 and CmSPL13 in leaves at different leaf positions
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Fig. 6 The expression patterns of miR156 under

treatment of sucrose
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