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Physiological Characteristics of Arbuscular Mycorrhiza-Rudbeckia hirta

Symbiont under Saline-alkali Stress

FANG Linlin, ZHOU Yunhui, YANG Chunxue”

(College of Landscape Architecture, Northeast Forestry University, Harbin 150030, China)

Abstract: Rudbeckia hirta not only had the ability of cold, drought and saline-alkali resistance., but also
was the most commonly used ground cover plant in urban landscaping. In this study, Funneli formis mos-
seae was selected as the inoculant substrate in pot experiments. 70 days after the colonization, NaCl and
NaHCO, solutions at different concentrations (0, 65, 135, 195 and 260 mmol * L.”') were subjected to
salt or alkali stress. After 10 days of treatment, we determined AM fungal colonization, chlorophyll con-

tent, malondialdehyde (MDA) content, antioxidant enzymatic activity and osmotic regulation substance,
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so as to clarify the effects of AM fungus on the root colonization status and salinity tolerance of R. hirta
and to provide a theoretical basis for the use of R. hirta to repair saline-alkali soil and the application of
AM fungi in practical production. The results showed that: (1) compared to control, colonization rate and
colonization intensity of AM fungi under salt stress were significantly reduced., while the trend of rising
and then decreasing under alkali stress was shown. (2) Under saline-alkali stress, AM fungi could increase
chlorophyll content and decrease MDA content in leaves of R. hirta to a certain extent compared with un-
colonized plants. As the concentration of saline-alkali solution increases, AM fungi could not only improve
the R. hirta proline, soluble sugar and soluble protein contents of osmotic regulation substances, also
could enhance plant activities of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase
(APX), which indicated that inoculation of AM fungi could improve the saline-alkali tolerance of R. hir-
ta. (3) PCA analysis showed that the resistance mechanisms between salt stress and alkali stress were not
the same, with chlorophyll, MDA, POD, SOD, proline and soluble sugar as the main factors in salt
stress, and SOD, CAT and proline as the dominant factors in alkali stress. In addition, VPA analysis also
showed that AM fungi had a greater effect on the overall physiological characteristics of R. hirta than sa-
line-alkali stress. The results showed that low alkali stress could promote the colonization of R. hirta by
AM fungi, and inoculation of AM fungi could significantly reduce the MDA content of R. hirta under sa-
line-alkali stress, improved antioxidant enzyme activity and osmoregulatory substance accumulation, so as
to improve the salinity tolerance of R. hirta.
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h. Hyphae; v. Vesicle; a. Arbuscular; i. Infection site

Fig. 1 Colonization of AM fungi in root system of Rudbeckia hirta
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Table 1 The colonization characteristics of AM fungi on root of Rudbeckia hirta under saline-alkali stress

Wit 5 RRE R I e
Stress Concentratlﬁ){l Lolomzz;tlon '(Jolon{zatltgn Arbuscule0 VesmularD
/(mmol « L™ ) rate/ % intensity/ % abundance/ % abundance/ %
0 91.114+3. 85a 67.67+1.53a 35.44740.71a 1.7040. 22bc
65 91.11+3. 85a 60.5540. 39b 24.4740.87b 2.3540. 04ab
NaCl 130 84.45+3. 85ab 54.56+0.51c 17.92-+0. 66¢ 2.7240.13a
195 80.0046. 67ab 47.1141.58d 16.91+0. 87c 2.857+0.55a
260 75.55+3.85b 37.0241.52e 3.4240.23d 1.05+0. 11c¢
0 91.1143. 85ab 67.67+1.53b 35.4440.71a 1.70+£0. 22b
65 95.55+3. 85a 73.547+0. 36a 26.67+1.10b 4.63=+1.05a
NaHCO, 130 84. 45+ 3. 85bc 57.2242.83c¢ 25.9840. 34b 3.9140. 33a
195 75. 554 3. 85¢cd 32.9340.41d 11.91+1. 23¢ 1.10+0.17b
260 71.11£3.85d 29.6042.82d 8.50740. 49d 0.78=+0.19b

TE 3R PBUE A P 2 AR DR 22 TR B R ) /NG 57 R 3R AN TR) Ak BRLAH ] A 0. 05 /K22 57 3 (P<<0.05) . R IH]

Note: Values in the table are mean =+ standard error, and different lowercase letters within same column indicate significant differences a-

mong different treatment groups at 0. 05 level (P<C0.05). The same as below
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Table 2 Effects of AM fungi on the contents of total chlorophyll and osmotic regulatory substances

in R. hirta under saline-alkali stress/(mg+ g ')

Wit o AM S nH % A A P A P R &
B3t . . HH S ) s . ; ine
Concentration Chlorophyll Soluble sugar Soluble protein Proline
Stress 1 AM fungus
/(mmol « L. ) content content content content
NM 2.16=+0. 32abed 1.9540. 13f 6.69+0.27¢g 0.7140.02d
0
AM 2.43+0. 23abc 3.07+0. 04de 12.454+0. 29cd 0.5140.01ef
NM 2.727+0.31ab 2.19+0.13f 7.13+0.07¢g 1.1340. 06¢
65
AM 2.83%£0. 15a 4.03+0.11d 13.1540. 04c 1.4740.01b
NM 1.9740. 13cde 2.84+0.07e 11.62=£0. 65d 0.48740. 00efg
NaCl 130
AM 2.09+0. 28bcde 4.3740.01d 19.56=+0.08a 1.3340.22b
NM 1.8140. 23cde 4.02+0. 23d 10. 39+0. 60e 0.347+0. 00fg
195
AM 1.9240. 15cde 4.93+0. 22¢ 15.11+0. 05b 1.7540. 00a
NM 1.4740. 31e 5.91+0.04b 9.08+0. 58f 0.3140.00g
260
AM 1.62+0. 18de 7.71+£0. 18a 14.66+0.57b 0.5440.00¢
NM 2.16=+0. 32ab 1.95%0. 13h 6.69+0.27¢g 0.7140.02d
0
AM 2.43%+0. 23a 3.07+0. 04ef 12.45%+0. 29f 0.51+0.01f
NM 2.0940. 26ab 2.55740. l4g 12.93+0. 27f 0.7540.02¢
65
AM 2.1540. 16ab 2.8440.07f 15.4340. 21e 1.3440.01a
NM 1.94+0. 21ab 3.24+0.04e 15.67+0. l4e 0.66=40.00e
NaHCO, 130
AM 2.08=+0. 19ab 4.3240.18d 17.44+0. 21d 0.9340.01b
NM 1.7040. 14bc 5.9240.09a 19.28+0. 21c 0.43+0.00g
195
AM 1.7440. 16bc 5.6940. 03ab 21.2740.04b 0.53+0.01f
NM 1.1140. 31c 4, 96-+0. 06¢c 15.47+0. 06e 0.3040.01i
260
AM 1.5040. 29bc 5.47+0.04b 23.7940.07a 0.3440.00h

TE:NM RR RIEER AM HE s AM RR %A AM E#; T

Note: NM indicates that AM fungus was not colonized; AM indicates that AM fungus was colonized; The same as below
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Table 3 Effects of AM fungi on antioxidant enzyme activities of R. hirta under saline-alkali stress
Wit e AM TE i E ALY A B AL i E AL A UK IR 3 A 1k ) i
S L Concentration Myco ‘hm 1 POD SOD CAT APX
ress /(mmol « L™ yeorriiza /(U'gﬂ e min_ D) /(U-gf1 « min~ ) /(U'gfl e min_ ) /(U'gfl e min_ 1)
NM 97.3346. 11de 119. 2344, 18fg 15. 82+ 1. 64def 116. 00£6. 93e
0
AM 114. 67412, 22¢ 161.0942.03d 21. 3042, 49c¢ 137.33+12. 96e
NM 120.2747.60c 137.8144.67e 18.20£0. 65cde 167.47+11. 66de
65
AM 218.67+12.22a 173. 15+ 1. 26cd 26.8743.55b 209.60+14. 82cd
NM 113.8743.95¢ 128.60+4, 79ef 27.084+1.50b 202. 67423, 32cd
NaCl 130
AM 178. 674 16. 65b 182.99+1. 27¢c 36.4044. 23a 266.67+28.10b
NM 88.8046. 84e 111.76+9. 75gh 13.43+0. 751g 203.20+9. 70cd
195
AM 106.1342.01cd 228.74+5.23a 19.43+1. 75cd 498.93+10. 44a
NM 83.2045. 60e 102. 9640. 89h 11.48+1. 35g 136. 00429, 86e
260
AM 97.074+6. 66de 208.48+3. 14b 14. 30+ 1. 30eflg 229. 33423, 22bc
NM 97.3346. 11cd 119. 234+4.18d 15. 82+ 1. 64c 116. 00+6. 93def
0
AM 114, 67+12. 22ab 161.0942. 03¢ 21.3042.49ab 137.33+12. 96cd
NM 106. 67+4. 62bc 116.43+4.57d 19.0740. 75bc 183.73+18.80b
65
AM 128.00£8. 00a 195.5840.77b 21.4541. 35ab 239.20+17. 44a
NM 101.337+12. 22bed 108. 3644, 08d 21.454+1.72ab 133.0749. 27cde
NaHCO, 130
AM 114.67=+4. 62ab 200.0740. 32b 23.69+1. 76a 166. 67411, 58bc
NM 88.80+7. 20de 85.27+3. lde 16. 90+ 3. 44c 100. 8049, 73ef
195
AM 93.33412. 22cd 206.25+2.37b 18.4940. 90bc 113. 3347, 22def
NM 65.87+7.48f 71.07410. 33f 11.05+1. 30d 88.00+12. 42f
260
AM 76.80+4. 23ef 223.3842.27a 11.12+£1.27d 98. 6745, 21ef
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[Fi) A b o A AH [ 6% 5 BB 3 Ak 3845 T (I
2,AB) TR R AR MDA 7 5 3/ T 40 h
(YA 422 TR A Bk, HL >4 2R W38 R Ol 65,130 A1 260
mmol ¢ L1 B Hi i) 22 53k 2 7 2 K SE (P <<0. 05) ,
M 24 58 o 30 46 B R 130,195 Al 260 mmol « L™ B
FojE) 22 5 58 % (P <<0. 05), B A5 h 2l fa b 28 vk 45 T
LI AUR I E A AR P MDA & & 3 BB SE
Fry#as ., WS RERAAKRN MDA & & 7E 3
SIEIE I A o 5 o N 17 7 S S NS | NE S £ S

M B9 PCA #0 VPA 4 #f

MR 4 W] LU, B0 48 7 b 0 3a N4 e A
BERF AR AT HE IO 2 A E A4y (PCL.PC2), Horprdh |
Bl A S 42 B 4 A A B AS T5 AS E B A 43 ) S BT DL i
FE 83.7%0.87. 6% .76.5% F1 89. 7 %0 B E 4 AL b &
FRAE e 4 v HLARAG 431 10 [R) s 2 25 i A1 Sk 5 A
SRR R TR T 0. 75 BT 5 BT 7R B0 3 4
A AR A AE G PE . e, BRI 3 R R0 2 Y
PC1 F1 PC2 Wiy F 2 F A ], 76 35 b 33 v D i 2
F N .POD.SOD. Jifi 22 2 F1 vl ¥ 4 hy 22

ENM HAM
0.045 0.025¢ a
a =
0.040 A ™ B
& 0035 b £ 0.020F b
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NaHCO,K & NaCl¥k &£

NaHCO, concentration/(mmol* L")

Fi

K2 Eheia T AM EE XRG04 MDA &
g.2 Effects of AM fungi on MDA content in Rudbeckia hirta under saline-alkali stress

NaCl concentration/(mmol* L")

i 1Y

R4 AEAVBTHEOHEBEENERHAITERS SHHH PCL 1 PC2F
Table 4 Loadings for PC1 and PC2 of principal component analysis of chlorophyll, malondialdehyde,

osmoregulatory substances, and antioxidant enzymes under different treatments

h 8 Saline stress W30 Alkali stress
Jabi AHEB NM B AM AHEB NM BEB AM

PCl1 PC2 PCl PC2 PCl1 PC2 PC1 PC2
42 Chlorophyll 0. 866 —0.124 —0.867 —0.111 0.719 —0.477 —0.860 0.277
N T MDA —0. 858 0. 145 0.917 0.225 —0.743 0. 650 0.845  —0.464
oA LY POD 0.902 0.275 0. 834 0. 480 0.699 —0.673 0.988 0. 008
ALY B GRS SOD 0.863 0.310 —0.788 0.335 0. 855 —0.301 —0.609 0.726
L A H CAT 0.543 0.714 —0.701 0.531 0.914 0.085 —0. 647 0.539
YUK LR L Wy APX 0.015 0. 865 0.479 0.741 0.753 —0.270 —0.253 0.938
Jifi %/ Proline 0.893 —0.301 —0.158 0.875 0.782 —0.618 —0.129 0. 986
Al % 1 Soluble protein —0. 415 0. 889 0. 044 0.722 0.010 0.992 0.928  —0.345
WP Soluble sugar —0.924 0.008 0.843 —0.018 —0.423 0.872 0.730  —0.548

TE IR B AR AE A =>0. 75 BEWIAE 32 5043 T 09 i AH DG 1

Note: A bold eigenvalue =0. 75 indicates a high correlation in the principal components
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Residuals=0.54

Values<0 not shown
X1k AM HE AR, X2 Sk £k 6 i
3 AM FLTE R ER B W30 % R0 2 A BRI VPA 43 AT
X1 refers to AM fungal treatment, while X2 is saline-alkali stress
Fig. 3 VPA analysis of physiological manifestations

of AM fungi and saline stress on R. hirta
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