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Abstract: In this study, the responses of CaCl, addition to seedlings of Cornus hongkongensis subsp.
tonkinensis » which were subjected to 3%, salt stress, were evaluated by physiological indexes, including

seedling growth, phytosynthetic pigment content, photosynthetic gas exchange parameters and osmotic
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regulation substance content, etc. The main results were: (1) 3%, sea salt stress significantly inhibited
seedling growth, increased the contents of malondialdehyde (MDA), soluble sugar, soluble protein, pro-
line and activity of superoxide dismutase (SOD), increased photosynthetic pigment synthesis, photosyn-
thetic parameters including intercellular carbon dioxide concentration (C;), net photosynthetic rate (P,),
stomatal conductance (G,) and transpiration rate (T,). (2) For alleviating treatments with CaCl, to
stressed seedlings by 3%, salt, application of CaCl, with low concentration (10 — 20 mmol « L") to
stressed seedlings reduced the salt damage rate and mortality rate, decreased SP content and further pro-
moted leaf and plant biomass of seedlings. Correspondingly, MDA content in alleviated seedlings was sig-
nificantly decreased at medium and low concentrations of CaCl,. Alleviator with medium concentration (30
mmol * L") promoted the synthesis of chlorophyll B and total photosynthetic pigment. C;, P,, G, and
T, in stressed seedlings were effectively enhanced in all alleviating treatments., Comparatively, the effects
at low concentration of CaCl, on alleviating stress were significantly superior to that at medium and high
concentrations. CaCl, application with high concentration (40 mmol « L.™') did not relieve all measured
physiological indexes stressed by 3%, sea salt. In conclusion, the application of low concentration of CaCl,
(10—20 mmol « L™") could reduce the damage of salt stress by reducing the decomposition of photosyn-
thetic pigments, improving the photosynthetic rate, inhibiting the accumulation of reactive oxygen spe-
cies, and maintaining the stability of plasma membrane, thus reduce salt damage rate and mortality of
seedlings, and effectively alleviate the inhibition effect of salt stress on C. hongkongensis subsp. tonkinensis.
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respectively; The same as below

Effect of CaCl,application on salt damage rate and mortality rate of salt-stressed seedlings

of C. hongkongensis subsp. tonkinensis

%1
Table 1

CaCl, M B EE B THRETWREEYWEMIRE LL A 10

Effects of CaCl, application on the salt-stressed seedling growth

of C. hongkongensis subsp. tonkinensis

H: ¥yt Biomass/g

b 3 M3 L
Treatment R Root Z£ Stem M Leaf SAEY A Total biomass Root/Shoot
Ca, (CK) 7.26+1.70a 12.17+1.59% 17.57+0.91a 37.03%3.57a 0.29740. 04c
ST+ Ca, 4.86+0.66b 9.45+0. 64ab 6.30+0. 46d 20.6140. 65¢ 0.52740.07a
ST+ Cay, 5.5840. 38ab 11. 38+ 1. 03ab 12.17+2.59bc 28.56+1.93b 0.33£0.07bc
ST+ Ca,, 5.25+0.60b 11.19+0. 65ab 13.80+1. 55ab 30.24+2.26b 0.287+0. 04c
ST+ Cay, 4.49-+0. 20b 8.34+0.82b 9.49+0. 93cd 22.324+1.09c¢ 0.35740.01bc
ST+Ca,, 4.5940. 38b 10.8241. 31ab 10.6141. 09be 24. 9840, 68bc 0. 4540. 04ab

TE : [R5 A F /NG b R R AL BLE E 0. 05 K P22 57 B (P << 0.05), A

Note: The different lowercase letters in each column indicate significant difference between treatments at 0. 05 level (P <C 0. 05). The

same as below
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Effects of CaCl, application on photosynthetic gas exchange parameters in the salt-stressed seedling
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R EE SN N TR NS N 3L W B
Jiti CaCl, 22 i £ B30 fiE IR % BUAH T ST AR BEL ST
+Cay, M ST+ Cay, LB ER FAEIRA BTt (B D
2J) B AT IR 1) 2 A0 g (BT 2) 5 1 v ik 1Y
CaCl, KbFRZE MR 5 B30 A ROCR W s itk — 55 . 2= 5 55
AT R B AR H Y CaCl, (5~10 mmol /L) &b
AT DU £ W 38 T VD IR B (Ammo pi ptanthus mon-
golicus ) W K IFRRARHET -,

Jiti 11 CaCl, W] 2 fif &5 Ji 38, 3 14 98 76 A8 9 1 4=
KA YR R 2B . AW W43 20 Bhaa T
AR T YRR &)y A 1] 3G I AR AR A ) R AN SR K S
W, NITAERF A ) fEE B8 TR IE R A K., X5
I e AR (Quercus virginiana) A T HAEY
AT L Ah IR R BRI E T CaCl,
(10~20 mmol/L) i % $& & 1 kW38 &)y 5 i 2 B ik
I, RIF RS BRI ARG T R 45 R B
Wi 10 mmol/L B8 CaCl, XF 3838 T /NA SR (Brassi-
ca cam pestris ssp. chinensis L) ARG IRHVER .

AR B8 T 1Y I B 7 A B CRT s R SSL T
WY SPUM AR Pro 45) n L4 Ak 4 I L) s %
HE AWIEW L E S IR Ca® ] LR i
HZ (I pomoea batatas Lam.)SS Fl Pro WL £ ,
SR AR A B PR RE T L ORI R IR &
B INAMIE CaCl, %4k it 4 1 SS il Pro 952
AR ARRT A R H SP & i, 0 AR IR Ak
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il MDA SR i A A 7= 40 B4 i % Xt
2% 38 M 2% ( Helianthus annuus 1) BT 58 & B, 10
mmol/L CaCl, 7] LA & 2 #& & SOD.POD,CAT i
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2538 3 & P SAL R FEAR P, A1 G, LABG 1k 7K 43 5k
JE PR Lt O B A AN IR CaCl, AT L 4 R



148 ode Moy % iR 13 4

AR S 5 R O A AR N PR AIE &) Y IE
A RS i AR B CaCl, AN i 36 40 d e &
KA, H ST Cay, AbHAY R B4 28 s [l R
WTH T PG, .C, #1 E, Hrp ST+Ca,, #l ST+ Cay,
MORCRTE O . BB R A R T Bl F T
A R BLAMNIE S A BE AT DL R AR B0 R 24 (Loni-
cera japonica Thunb,) KL S H G O R &
. MM ERMRA TR AR BT R AL E Y G, I B RIS
1M CaCl, WIATRLEE &5 G, Ul B3R B0 T 48 5t Y Jid
AEHHCA RORBEAR Y 2 P 2 S ALRR I .

S 23K

[1] KOLOMEICHUK L V, EFIMOVA M V, Zlobin I E. 24-Epi-
brassinolide alleviates the toxic effects of NaCl on photosyn-
thetic processes in potato plants[]J]. Photosynth Research .
2020, 146(1): 151-163.

[2] KHAN M, IQBAL N, MASOOD A. Variation in salt tolerance
of wheat cultivars: role of glycinebetaine and ethylene[ ] ].
Pedosphere, 2012, 22(6): 746-754.

[3] SHRIVASTAVA P, KUMAR R. Soil salinity: A serious en-
vironmental issue and plant growth promoting bacteria as one
of the tools for its alleviation[ J]. Saudi Journal of Biological
Sciences, 2015, 22(2): 123-131.

[4] PARIHAR P, SINGH S, SINGH R, et al. Effect of salinity
stress on plants and its tolerance strategies: A review[]]. Enwvi-
ronmental Science Pollution Research , 2015, 22(6): 4 056-4 075.

[5] NAZAR R, IQBAL N, SYEED S, et al. Salicylic acid allevi-
ates decreases in photosynthesis under salt stress by enhancing
nitrogen and sulfur assimilation and antioxidant metabolism
differentially in two mungbean cultivars[J]. Jowrnal of Plant
Physiology . 2011, 168(8): 807-815.

[6] % A, BI5ok, skakdh. % HPha N RREHEE B L N3
ERETFHFEERN]. EE¥HR, 2011, 31(3): 784-792.
XU M, MA Q R, ZHANG J T, et al. Osmotic and ionic
stress effects of high NaCl concentration on seedlings of four
wheat (Tritium aestivum 1.) genotypes[]J]. Acta Ecologica
Sinica, 2011, 31(3): 784-792.

(7] A &, #hskae, Bk 8. Kb W RIS R Y R %) #h W8~ A

A A AR BRI Em)]. m R AR KRR CA R
Bha) . 2020, 35(6): 1 040-1 045.
BAO Y, WEI LY, CHEN C. Effects of exogenous salicylic acid and
methyl jasmonate on the physiological characteristics of Rosa chinen-
sis “old blush” under salt stress[J]. Jowrnal of Yunnan Agricultur-
al University (Natural Science), 2020, 35(6): 1 040-1 045.

[8] HOSSEINI S J, TAHMASEBI-SARVESTANI Z, PIRDASHTI
H. et al. Investigation of yield, phytochemical composition, and
photosynthetic pigments in different mint ecotypes under salinity

stress[ ] ]. Food Science & Nutrition s 2021, 9(5): 2 620-2 643.

ZE bR i CaCl, 947 £h B 36 2% fi ab 28
i, K BE CaCl, 43 (ST Ca,, Fil ST+ Cay,) A B
A R R T AR B ARG RE ) A AR R
B T ff 4y i 1) T AR 2B &)y 1 1) 2R A7 B )
BEAR SN P A FE T35 5 17 i YR B CaCl, b3 (ST H-Cay)
X4y v AR KA —E AR . R L 2R
HMIE CaCl, 2% fift oy 360 B 75 200 £ 50 B ROV B . SR T
AN IR FE D HCHTER 38 A L IEAS 58 4 — 30, [/l — A )
AN & B I 4 T R BE AR TR, A 26 Ca”t il
PR 5 DU BRAE A i SR ML BEA T8 Bl — L IR AL

[9] JITHESH M N. PRASHANTH S R, SIVAPRAKASH K R, et
al. Antioxidative response mechanisms in halophytes: Their role in
stress defence [J]. Journal of Genetics, 2006, 85(3); 237-254.

[10] BARTELS D, SUNKAR R. Drought and salt tolerance in plants
[J]. Critical Reviews in Plant Science , 2005, 24(1); 23-58.

(110 #RESE. ExEMa T/l RGE Y RITE L REN
Fual)]. YA, 2014, 50(6): 817-822.

XU C S. Effects of calcium on biomass and antioxidant sys-
tems in seedlings of Malus xiaojinensis under salt stress[]].
Plant Physiology Journal, 2014, 50(6) . 817-822.

[12] WANG W B, KIM Y H, LEE H S, e al. Analysis of an-
tioxidant enzyme activity during germination of alfalfa under
salt and drought stresses[J]. Plant Physiology and Bio-
chemistry, 2009, 47(7): 570-577.

[13] EWEWS, B BEH, IR0, %, SR CaCl, X NaCl 38 T RRAE L)
W AR, VEILRIPI 4. 2018, 38(9): 1 683-1 691.
WANG X L, LUXY, TUWW, et al. Effect of exogenous
CaCl, on the nitrogen metabolism of sour jujube seedlings un-
der NaCl stress [J]. Acta Botanica Boreali-Occidentalia
Sinica , 2018, 38(9): 1 683-1 691.

[14] KHAN M N, SIDDIQUI M H, MOHAMMAD F, et al.
Calcium chloride and gibberellic acid protect linseed (Linum
usitatissimum L..) from NaCl stress by inducing antioxidative
defence system and osmoprotectant accumulation[]]. Acta
Physiologiae Plantarum , 2010, 32(1): 121-132.

[15] B 4k, 2= Bk, FTEESER « B bk 42, A5, SN 55 XT3 s

R AR R R4 AR g L)), R AR,
2022, 30(5): 1 185-1 193.
YAN Z, L1J, ALINUER A, et al. Effects of exogenous calcium
on seed germination and seedling growth of Hulthemia berberifo-
lia under salt stress[J]. Acta Agrestia Sinica, 2022, 30(5):
1 185-1 193.

[16] WU G Q, WANG S M. Calcium regulates K /Na " homeo-
stasis in rice (Oryza sativa L.) under saline conditions[]].
Plant s Soil and Environment , 2012, 58(3): 121-127.

(171 F W H s, RHH. % H L X NaCl a4 5
i 17 K% AN IS B % RN ], A AR BEE A, 2014, 50(3) .



3 1

INRA 55 AP CaCly, 25 fiff 75 3t I REAE &7 1

LR W30 %) A= BRAL I 449

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

338-346.

WANG G, XIAO Q. YI'Y J, et al. Alleviatory function of
exogenous calcium in responses of sweet potato ( Ipomoea
batatas Lam. ) seedlings to NaCl stress[J]. Plant Physiolo-
gy Journal» 2014, 50(3): 338-346.

FUXX, LIUHN, ZHOU X L, et al. Seed dormancy mechanism
and dormancy breaking techniques for Cornus kousa var. chinensis
[J]. Seed Science and Technology » 2013, 41(3); 458-463.
WER, R A, XEL WF R AL R B3I e T R
FIHLID. FRlBHEFF &, 2015, 29(3): 1-6

FU X X, XU J, LIU G H. Germplasm resources of ornamental
tetrapetalum nitudum and its development and utilization [ ] ].
China Forestry Science and Technology » 2015, 29(3); 1-6

Th AR, U R AR SR R BT U B I R AL ] o A A
YIBEUR . 1993, 13(1): 37-40.

HAN W D. Germplasm resources and development and utili-
zation of four-flowered groups[J]. Chinese Wild Plant Re-
sources, 1993, 12(1) . 37-40.

LU Q. YANG L, WANG H, et al. Calcium ion richness in
Cornus hongkongensis subsp. elegans (W, P. FangetY. T.
hsieh) Q. Y. Xiang could enhance its salinity tolerance[ J].
Forests, 2021, 12(11): 1 522.
LU Q, XU J, FU X X, et al. Physiological and growth re-
sponses of two dogwoods to short-term drought stress and re-
watering[ ] ]. Acta Ecologica Sinica , 2020, 40(2); 172-177.
YUAN J Q, SUND W, LU Q. et al. Responses of physiology,
photosynthesis, and related genes to saline stress in Cornus
hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang
[J]. Plants(Basel, Switzerland), 2022, 11(7) . 940.

A, EILR, . EYAEEATRREESEARIM]. 3
R b AR BORT AR, 2015,

OB, X gk, E OB A AN CaCl, XFERBA T PEAAR]E
FURG P A AR LT, AR A4, 2021, 57(5) . 1105
1112,

ZHAO Y, LIU W, WANG H, et al.
CaCl,

Effects of exogenous
on reactive oxygen species metabolism in Nitraria
sibirica under NaCl stress [J]. Plant Physiology Journal .
2021, 57(5): 1 105-1 112.

JAXZ # fh. I L RFEMRE CaCl, XFEEMHA T 2
(g RANRece: A TR fLFFJ SHEE YR, 2014, 20
(3): 449-454.

ZHOU SY, JIANG J, GAO LY, et al. Effects of CaCl,
concentration on physiology of Brazil banana seedling under
NaCl stress [J]. Chinese Journal of Applied amd Environ-
mental Biology, 2014, 20(3) . 449-454.

MINORSKY P V. An heuristic hypothesis of chilling injury in
plants: A role for calcium as the primary physiological transducer of

injury [J]. Plant . Cell and Environment , 1985, 8(2): 75-94.

R, X Sk, 2 Th. AR K E AL X B aa T v &
BN EMAERL] B, 2010, 30(1) . 27-31.

LIJ N, LIU Q. LI S. Mitigative effect of IBA and CaCl, on

under salt stress Ammopiptanthus mongolicus seedlings[J].

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Bulletin o f Botanical Research , 2010, 30(1) . 27-31.
TRIFIF. CaCly, X #R M R /1 B 3 A A R 56 A B 1 19 5%
W], SRR . 2012, 33(4) . 642-645.
XU F F. Effects of CaCl, on the growth and the mechanism in
Brassica cam pestris ssp. chinensis L. under the salt stress [J].
Chinese Journal of Tropical Crops. 2012, 33(4) ;s 642-645.
PN, EMR, Brasgs. SR X 6 A #E R a9 A 4K B A B
FEAR SN ]. MOl BE2EBFFE . 2009, 22(3): 315-324.
SUN H J, WANG S F, CHEN Y T. Effects of salt stress on
growth and physiological index of 6 tree species[ J]. Forest
Research , 2009, 22(3): 315-324.
KATr, XU, REIRAE, S R W aa X i [ AR A0 &) 1 4R B
Rt 2], £ 24, 2015, 35(15) . 5 140-5 146.
ZHUJF, LIUJ T, LU Z H. et al. Effects of salt stress on
physiological characteristics of Tumarix chinensis Lour. seedlings
[I]. Acta Ecologica Sinica, 2015, 35(15): 5 140-5 146.
AMITRANO C, ROUPHAEL Y, PANNICO A, et al. Re-
ducing the evaporative demand improves photosynthesis and
water use efficiency of indoor cultivated lettuce[ J]. Agrono-
my, 2021, 11(7) . 1 396.
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases:
1. occurrence in higher plants [ J]. Plant Physiology .
1977, 59(2) . 309-314.
GIRIJA C, SMITH B N, SWAMY P M. Interactive effects of
sodium chloride and calcium chloride on the accumulation of pro-

line and glycinebetaine in peanut (Arachis hypogaea 1.) []J].

Environmental and Experimental Botany , 2002, 47(1) . 1-10.
WRA R, skaRvE, TR W, AE. ESXTER A R A ) H 24

oA A B E R L)), bR 24, 2009, 24(2) ¢ 149-152.
CHEN Q Z, ZHANG B J, ZHOU F, et al. Effects of sup-
plemental calcium on photosynthetic characteristics of oil sun-
flower seedlings [ J]. Acta Agriculturae Boreali-Sinica ,
2009, 24(2): 149-152.

WEI X, SU X, CAO P, et al. Structure of spinach photosys-
tem II-LHCII super complex at 3. 2 A resolution[ J]. Na-
ture, 2016, 534(7 605): 69-74.

RIEZE, b, Rk, . a8 KfEgiEoLs
PR B AR G A MR v 52 ma [T, h R ROE B %, 2004, 37
(10): 1 497-1 503.

ZHU X J, YANG J S, LIANG Y C, et al. Effects of exoge-
nous calcium on photosynthesis and its related physiological
characteristics of rice seedlings under salt stress[]J]. Scientia
Agricultura Sinica , 2004, 37(10): 1 497-1 503.

WG, MO, BrE R, 4 B hE TANES X 2 LS
ARG IEEL ] PR 22k, 2019, 44(8): 1 531-1 536.

HUANG LY, L1ZZ, DUAN TY, et al. Regulation of ex-
ogenous calcium on photosynthetic system of honeysuckle un-

der salt stress[J]. China Journal of Chinese Materia Medi-

ca, 2019, 44(8): 1 531-1 536.

(8 KT 1)



