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Indoor Simulating Research of Key Plant Metabolites Release from
the Litters of Typical Arboreal, Shrubby and Herbaceous Species
in the Loess Hilly Region
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Abstract. Litter-derived metabolites play important ecological roles in plant-soil systems. In this study.
the litters of 5 typical arboreal, shrubby and herbaceous species, including Robinia pseudoacacia , Pinus
tabuliformis, Hippophae rhamnoides, Setaria viridis and Lespedeza daurica , in the hilly and gully re-

gion of the Loess Hilly Region were studied. Soil from a site that far from the litter sampling area was
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mixed with sterile water, fully shocked and precipitated, and the supernatant was used for inoculating lit-
ters. Then, based on an indoor-decomposition simulation under room temperature (25 ‘C) and constant
humidity (the water-holding rate of litters was approximately 100%), and the degradation or release char-
acteristics of 7 types of metabolite in this process were studied, aiming to get more deeply understand the
decomposition process of litters and its subsequent ecological effects, and to provide scientific basis for the
management of forest and grass ecosystems. The results indicated that: (1) during the decomposition
process of 150 d, the lignin of 5 types of litter showed little degradation (<(30%) in the early stage (0—60
d) and tended to stagnate in later stage; most (>>80%) of water soluble phenolics, condensed tannins and
flavones released rapidly in the early stage (0—30 d) of decomposition, but slowed down significantly in
later stage. The release of terpenoids was continuous and even accelerated at the later stage during the ex-
periment. The release of soluble sugars and amino acids showed a trend of rapid release in a short time and
then slow release. In general, except for lignin, which degraded significantly slower during litter decompo-
sition, all other metabolites exhibited an overspeed release trend. (2) The annual degradation or release
rates of 7 types of metabolite were significantly higher in the litters of H. rhamnoides and R. pseudoaca-
cia than in the those of L. daurica, S. viridis and P. tabuli formis (P<Z0.05). (3) The annual degrada-
tion or release rates of lignin, condensed tannins, terpenoids and flavones were not significantly correlated
with their initial contents (P >>0. 05), while the annual release rates of water soluble phenolics, soluble
sugars and amino acids were positively correlated with their initial contents (P<C0. 05). In conclusion, ex-
cept for lignin, which degraded significantly slower during litter decomposition, all other metabolites ex-
hibited an overspeed release trend; the annual degradation or release rates of almost all these 7 types of
metabolite were positively correlated with the initial nitrogen and phosphorus contents of litter.

Key words: litter decomposition; metabolites; release characteristics; the Loess Hilly Region
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Table 1 Initial substrate quality of the tested litters
k27 Dil:en e HEIA b R

Litter L. daurica S. wiridis P. tabuliformis H. rhamnoides R. pseudoacacia

ik C/(mg/g) 613.80+259. 59a 482.58+54. 18ab 274.18+18. 73bc 201.55+14. 50c 441. 28424, 95ab
% N/(mg/g) 18.72+4. 24c¢ 5.94+0.51e 12.65+1. 48d 42.55+1. 35a 23.83+1.56b
W P/(mg/g) 2.9940.09d 4,2640.23b 1.4240. 19e 5.44+0.09a 3.54£0. 26¢
] % PEBE Soluble sugars/(mg/g) 2.9640.02b 1.81+0. 08¢ 2.59=£0. 30b 2.9140. 31b 4.5840.11a
R IR Amino acids/(pg/g) 0.8640.23d 2.4140.12¢ 1.22+0.16d 21.40+£0.52a 8.8740.06b
Water solugii%j};%l%ics/(mg/g) 5.65+0. 13e 26.70+2.06b 18.64+0. 06¢ 35.1940.61a 7.90-£0. 33d
(iondense?fﬁii/(mg/g) 13.4242.05b 0.7940.07d 41.81%2.90a 10. 840. 75bc 8.7240. 40¢
# i Flavones/(mg/g) 43.27+2.62b 22.5046. 75¢ 60.7446. 76a 36.3843.87h 22,4047, 84c¢
2% Terpenoids/(mg/g) 7.6940.92¢ 2.7640.51c 69.66+1. 62a 25.947+4.92b 28.51+2.72b

A i Lignin/(mg/g) 171.00+1. 82¢ 49.0049. 50d 291.00+11. 83a 222.00+24.49b  2215.67+16.52b

T AT AS A 7 B s s 0 W 1R FE 0. 05 AR P AFTE 3 25 57+ (P<<0.05), T A

Note: Different letters in the same row indicated significant differences among litters tested at 0. 05 level (P<C0.05). The same as below
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Fig.1 The mass loss of litters
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Fig. 2 The degradation or release of the secondary

metabolites of litters
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Fig. 3 The release of the primary metabolites of litters
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