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Abstract: Endo-1,4-8-glucanases (EGases) are involved in editing of plant cell walls and play important
roles in tissue elongation, fruit ripening, and abscission. In this study, we cloned an EGases gene PnCell
from Panax notoginseng by RT-PCR, and analyzed its expression and function. The results showed that:
(1) Exogenous methyl jasmonate, salicylic acid, gibberellin, abscisic acid, and ethephon treatment signifi-

cantly induced the expression level of PnCell , while the infection of root rot fungi including Fusarium so-
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lani and Fusarium oxysporum as well as Alternaria alternata and Fusarium equiseti significantly inhibi-
ted its expression level in P. notoginseng. (2) Subcellular localization result showed that PnCell-GFP fu-
sion protein was localized in the cell wall of onion epidermal cells. (3) The promoter sequence [ (—1) —
(—828) bp | of PnCell was cloned through chromosome walking, and a plant expression vector (pBI121-
PPnCell-GUS) of B-glucuronidase driven by PnCell promoter was successfully constructed, which was
then transferred into Nicotiana tabacum L., and 7 positive transgenic tobacco plants were identified
through PCR screening. (4) GUS activity detection indicated that 5 plant hormones can induce promoter
activity of PnCell , including methyl jasmonate, but the transcriptional activity of PnCell promoter de-
creased after infection with 4 pathogens, such as F. solani. And the PnCell promoter was also negatively
regulated by the P. notoginseng WRKY transcription factor 5/9/12/15/27. (5) Compared with wild-type
tobacco, PnCell-overexpressing transgenic tobacco increased susceptibility to the root rot and decreased
lignin content, indicating that PnCell may be involved in altering the cell wall structure. The above results
indicate that plant hormones can up-regulate the expression of PnCell in P. notoginseng roots, while
pathogens infection reduces the expression level of PnCell and inhibits the PPnCell activity. It is specula-
ted that PnCell may increase the susceptibility of P. notoginseng to root rot by modification of cell wall

structure.
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Table 1 Primers used in the experiment
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- e
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. , A . e A e A, ORF #
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2 e 22 o
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Fig. 1 Cluster analysis of Panax notoginseng endo-1.4--glucanases
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Fig. 2 Expression analysis of PnCell after plant

hormone treatments and inoculation with fungal pathogens
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Fig. 4 Activity analysis of the PnCell promoter after plant hormone treatments and inoculation with fungal pathogens

W £ Without inoculation
O &SR T8 F solani

30T 0207
— A ok = D
z a5t - i
= o (.15}
.S 20F uﬂmﬂg Bk " "
e 1sp e 2 0.10f 4
g " g s
g b £ 0.05}
< skok on
W ST o =
~ |—I-| ok
0 L PR e MY 1 r-l L 1 ! y 0
WI ©O1 02 03 04 05 06 07 WT 03 0-5 06 O0-7
#k % Strain #k % Strain
300
C sk
250
200F .
Kk

I8 BT T R
Lesion size/mm

S o

S &

o
<
T

EL L LT

| I I
WT O-3 05 0-6 O-7

WT 0-3 0-5 0-6 0-7 k% Strain

A, PnCell TEMAR H B3R 3 HT 3 BLC. PrCel ] 5o 3¢ 15 0 R4 i IG5 916 71 W i B0 9 KE 11 ARUAR £ 5 D, He Pt 5 9 70 0I5
MREARTR &, WT. BPAERIMNH;0-1/2/3/4/5/6/7. PnCell i FikH S UMM 5 * Fl »+ 435I FR/R 0. 05
0. 01 K- A7 7E 3 22 5
Bl 5 PnCell iz 3% 3K 40 2 %] 53t G Hie 70 T4 1) 5 8tk 43 A
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Fig. 5 Susceptibility analysis of PnCell-overexpression tobacco to Fusarium solani
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