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Effect of Exogenous Methyl Jasmonate on Osmotic Adjustment Capacity and

Proline Metabolism of Jatropha curcas Seedlings under Salt Stress
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Abstract: We conducted hydroponic experiments in a plant growth chamber to study the effects of exoge-
nous methyl jasmonate (0, 20, 40, 60, 80 and 100 umol « L ' MeJA) on osmotic adjustment capacity in
Jatropha curcas seedlings under salt stress (150 mmol « L' NaCD. J. curcas seedlings under normal and

salt stress conditions were treated with 0—100 pmol « L' MeJA, and tissue vitality, MDA content, water
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content, water potential, the concentrations of compatible solutes proline, glycinebetaine, and soluble
sugars in leaves of J. curcas seedlings, as well as the activities of the key enzymes A'-pyrroline-5-carbox-
ylate synthetase (P5CS), ornithine aminotransferase (OAT) of proline biosynthesis and the key enzyme
betaine aldehyde dehydrogenase (BADH) of glycinebetaine biosynthesis, and the expression level of pro-
line and glycinebetaine biosynthesis-related genes were measured. The results showed that: (1) exogenous
Me] A treatment enhanced tissue vitality and water content, but it decreased water potential and MDA con-
tent in leaves of J. curcas seedlings under salt stress, and the optimum concentration of MeJA was 60

1

pmol « L. (2) The application of different exogenous MeJA concentrations increased the contents of pro-

line, glycinebetaine and total soluble sugars, and the 60 pmol « L. ' concentration had the best effect.
Treatment with 60 pmol « L' MeJA significantly enhanced the accumulation of jasmonic acid, proline,
and glycinebetaine in J. curcas seedlings under salt stress. (3) The MeJA treatment also clearly raised the
activities of BADH, P5CS and OAT. and increased the expression level of the JcBADH , JcP5CS and
JcOAT in leaves of J. curcas seedlings under salt stress. However, the MeJA treatment decreased the ac-
tivity of proline dehydrogenase (ProDH), and inhibited JcBADH expression in leaves of J. curcas seed-
lings under salt stress. The results showed that exogenous MeJA promoted the accumulation of proline in
J. curcas seedlings under salt stress by activating the glutamate and ornithine pathway of proline biosyn-
thesis, especially the ornithine pathway, and inhibiting the proline degradation pathway. Meanwhile, Me-
JA also activated the biosynthesis of glycinebetaine in J. curcas seedlings. These results indicated that ex-
ogenous MeJA treatment can enhance salt tolerance and osmotic adjustment capacity in J. curcas seedlings
under salt stress, and osmoregulation is a key factor in MeJ A-induced salt tolerance.

Key words: methyl jasmonate; salt stress; Jatropha curcas L. ; osmotic adjustment capacity; proline metabolism
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Table 1 Sequences of specific primers used for RT-qPCR analysis
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Fig. 1

Effects of different MeJ A concentrations on tissue vitality and MDA content in leaves

of J. curcas seedlings under salt stress
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of JeP5CS, JcOAT and JcProDH in leaves of J. curcas seedlings under salt stress



54 Wiz 5%, 4 AR F R 6 X 8 300 R /AR T S0 5 1 98 T R SR 1 1Y R 801

WERET L OMEM 3 2 %, MK JcP5CS,
JeOAT He A KK K-35 8% Bl T 3.1 £ A
6.5 (P<C0.05), #MJE MeJ A 4b ] gF — 45 2 &
A F P5CS 1 OAT 36 % A K JeP5CS.,
JeOAT FeHFIEKF, HANEE 1~4 d 8] 35 4f ¢
2w TR NaCl A3 ; 5 50 NaCl &b 39 %)) i
AHH, MeJA + NaCl &b 38 4 d #9458 i - P5CS Al
OAT {4 9 23 BV T 17. 1% A1 30. 2%, H M
RiE) JeP5CS M JcOAT R KFEBE LT
25.6 % 1 39.6% (P<C0.05) (& 6,A.B.D.E), %
1M s /N 45 ¥ it R I 24 R B i B ProDHL I % %
HAKIEH JcProDH BFikKF-4 150 mmol -
L' NaCl b3~ 32 2] 1 2540 1 , 76 Wy 360 40 3 490 5] 4R
20 AR T R BRGS0 IR MeJ A Ab 38Tt 25 34 5
X Fl A ROV, Me] A+ NaCl 4b P 4 # 1 A ProDH
TGP F JeProDH 3R 3K 7K Pt 2 18 25 A% T [A] 1]
NaCl kb B, 7E Eh 10 AL B 4 d BF HEAR B NaCl Ab 2
Sl E R T 16. 8% Fl 24, 7% (P <C0. 05) (A
6,C.F)., Al UL, M MeJ A W] &b 2355 5 36 38 R /)
il —F %)y 8w B 2 R G B O B i L AL TP 5CS .
JcOAT R bR 31k DL S HRE i 3L [ JcProDH
IO S N N TR AR (A= N SIS N2 5 S
P5CS Al OAT By3& P, Ml 1 H % /% B ProDH
PELHXT OAT 3G HEF JcOAT P25 515 S 3L
I3 T PSCS Wi F1 JcP5CS A A2 ¥ T il 2 1R iy
B W] T G R e LA HE TR AE /MR 4
BN R,

31 ®

£ W30 2% 38 B™ A K 4 a5 1 R A )
RSP R R T K EBE
Wy T, 0 I 2 TR T SR R AT I M A ) B R T A AL
PR R BB ER R L MR R R B T g R
i B R B Sy g VSR A AN LN DS TR
AL A I, KRR BB &Y
FRE R T H R R DY . Hamouda 45 (4 8F 58 3IE
S Bt - SR 04 R T R 1 5 O AR 38 TR 98 7 Y R
88 5 A AR 5 K B DM SEET L Silva 45 i
T, ER a0 5 4R JEHLES F Na© 1 CL L DA K
i IR T S RN AT U M A L B ) T B R R
P T /N F B TR R EDY . AR RS A R R T, 150
mmol « L' NaCl rif kb B 4 d o] & 35 B AR /N A
YT R K EEOR E K EE KRA =  A R8 E
5 Jo i R ISR B ) A R PR 905 R R TR )

S [ S 0 B AR T SR A B O
BADH . Jifi 2 B2 &5 B % $# i P5CS Al OAT (93
Y, T JeBADH | JcP5CS ., JcOAT KRy %
TR AR R 38 20 A T i 2 R % A i ProDH
NG PE A6 T JeProDH K H £ 3k, X s 4E
F BB 35 T AR/ AR - S0 B R M TR e A v i 3
EH EEMEM.

B A5 SRS A Y R ABALSAJA
M MeJ A %3925 T HYTH R VT8 i 1 23 72, Hor,
MeJ A Ay — Tl A T 380 22 Bk DA by 76 1 400 B0 6 P T2 B
WP EEEEEERTY . Yo SRR B,
MeJ A $oi 7 ER A T H B2 0 P A (ROS) 1
B BE 7 o B T 3R 10 360 X e 1388 201 38 1 0 7 sk
M Tavallali 28 B AF 9 £ B, 25~50 pmol ¢ L
MeJ A 4b FERE$2 25 0 W38 T e Bk RS A 19 0% A 30K
HRZET b 400 5> 24 R & ik, DL R 40 B B8 1) 58 2
P DT P& AR T Bl 31 % i RS AR G 05 L Ka-
rimi S 4GE L WG 100 pmol « L' MeJ A A /b £
36 A 40 B R Y E AR 2 TR AT MDA (1 R
Z, 5 R v R A M A R Y. Gao
FEUESE MeJ A b 3 38 5 38 T ORI 935 15 8 5 BB
J1 AL RE S R P B R AR T R R
it ERPEE . SR . MeJ A 75 S48 40 it 1 42 v A HL
A 0 2 B R IR MeJ A TR #5538 35 18 1 45 i bl
Yyt RV 0 HAR ML G A AR, RIS EE R BoR,
40~80 pmol « L™" MeJ A 4b i A] i 3 4 & £ b 30
TN I AL AUNE T BEARH MDA % i Fi e
JK#G AN, 60 pmol « L7 MeJA kb B 5 35 2
BT R E T N R R K R K SR AT 45 R
FW L IEFLUR A MeJ A &b B AT A7 5% 5 55 R a8 R
JINKE - 40 R ) A RS D AT R R G 1 et AR Ak
i BE ol /0 BB 475 386 58 A LR K R T T R T
LI AT 1 .

I 220 TR T SR R RT3 S S ) R ) A BB
B EEANY D, EER A AT,
R BRI R TR T S R T M S A v
EAR SR Y A% B RE T AR 4
WREW,40~100 pmol « L' MeJA Ab B A $ 75 £
38 /N - 40 R 3 R 0 5 A R N AT
PEREAY & 8 X — 25 R 5 Karimi 25 (1 8 57 45 1
WA, SEBR b ARG 20~ 100 pmol « L
MeJ A fib 3 A, 5 25 45 = 1 /N 7 &0 B I % R e
B 6 A A W MeJA A3, 60 pmol ¢ L7
MeJ A 75 5 119 i 20 2 . i =52 B A0 T 5 1k ol R B8 Ak



802 ode Moy % iR 43 4

AR E, A 2 R UE S 60 pmol ¢ L'
MeJ A 4b B 1~4 d AT EE 42 55 56 0 38 T /N 7 N
R R FT R M 2 FR SR & . T UL 3SR
(1 MeJ A Ab 3T I 4 /25 5 W38 T /N 5 4 5 0
w2 S RN T A R A R R T KB i
PEATRL R B R /N 2 B O DK BE 7 5 TR U
UESZAMIE MeJ A Ab $H AT i 28 46 55 56 0 38 175 10 SR ]
M B RGN, R SR AR AT 5 3 A F T 5 Ak o 1 iR
KM EAN TR AETE T A2

N TR T MeJ A /MR T4
BB 7 R A AL A 56 G 0 T R S B R 2 R
AR 5 il 2 R A 56 6 R R A k. BT, 56
T MeJ A T 45 JBik 360 T 90 S Ak R 2 1 1R 1 1
WFIE M AR A TR . AEE 45 R B R .60 pmol
« L' MeJA b3 18 m T 3 Wit T /N F 4 i
MR SR B A R G B B BADH W& . B E T
JcBADH S ) 3R 357K, R U] MeJA W] 4 2
JeBADH B3R IR 6 105 S 08 4= W) 45 i #2
[FHF,60 pmol « L' MeJA AbFR L & T80
AN - &Iy R 2R S OGS i PSCS Fil OAT
FIHEME, BT JeP5CS  JcOAT R Y KB KF,
YT PSCS HL OAT 4353 2 il 20 R A= W0 5 1 i 4
i 1 2 IR 32 A8 1Y) O B Rl o AR a6 3% 2RI 52 R e
T MeJ A [ B3 Ak T /N 7 4l v Tl 202 5 i) 1 2%

5%k

[1] PANDEY V C, SINGH K, SINGH | S. et al. Jatropha cur-
cas: A potential biofuel plant for sustainable environmental de-
velopment[]]. Renewable and Sustainable Energy Reviews ,
2012, 16(5): 2 870-2 883.

[2] # W& fLEHE BH =, % SMEKA R I8 T /M F

iR R L], PEILAE P ¥ ik, 2018, 38(6):
1 080-1 087.
YANG T, KONG CY, YANG L Y, et al. Effect of exoge-
nous salicylic acid on the metabolism of proline in Jatropha
curcas seedlings under salt stress[J]. Acta Botanica Boreali-
Occidentalia Sinica , 2018, 38(6): 1 080-1 087.

[3] POMPELLI M F, FERREIRA P P B, CHAVES A R M, et
al. Physiological, metabolic, and stomatal adjustments in re-
sponse to salt stress in Jatropha curcas[J]. Plant Physiology
and Biochemistry, 2021, 168 116-127.

(4] #  F.Bokd FLEH, % /MIF JcCIPK2 JEH Mk S

Wi, HANHL 2 d J5 MeJA X 5 &R & i & 42 1 il
PAEHE B, 534,60 pmol « L' MeJA 4b B[
ik 7 If 24 MR B f% B ProDH /Y 3% ¥, 90 i T
JeProDH FEN BRI, LRGSR LRV, B WA T
MeJ A 3 3k 3 A6 /N~ 4 ¥ 18 i 5 R I 20 R A
B IR AR LA A i) 1 S 1) I e A L o A T
FH ST A 2R TE /M T 2h B P AR . R LR
F18) T S Bl A I 2R B2 3 1 /N 40 1 2 R T RE
T3, BRI 58 1 40 v %0 8 1030 AT 32 1

25 AR, 150 mmol « L™ NaCl i3 v Kl 32
o5 /N - 4y v R R I S RN T R A
375 V) T ) DTS 8 o T O R L T P
60 pmol « L~ MeJA #5325 T $h Wit F /M
T R Bl R R SR AT A PR B i, [RIE L 60
umol + L MeJ A A0 5 7 £ Wit T /A 4
B RN EGR AR & = HEUE A K,
FEA T 4h i Byt K #Of MDA & &, o3 4h . 78R
A 25 AR SRR MeJ A S8 ik 1 b il 2 W2 AR ) G B
A AR S &R AR U H R S R s, DA e
I JF 2 1R A e 3k A2 A AR B /DN A - &0 e e R 1) R
2, A MeJ A AR BEOE 1 ) v 1A P SR 2R Y&
Wt . ik, AR MeJ A 54k T ER W38 R /N
2l R9E VA L T 1 /AR T 4 R T

k.

FIRAHILT]. PEALAY 4. 2019, 39(12): 2 123-2 131.
YANG Y. CHEN Y K, KONG C Y. et al. Cloning and ex-
pression analysis of JcCIPK 2 gene in Jatropha curcas L.[]].
Acta Botanica Boreali-Occidentalia Sinica s 2019, 39 (12):
2 123-2 131.

[5] POMPELLI M F, JARMA-OROZCO A. RODRIGUEZ-PAEZ L
A. Salinity in Jatropha curcas: A review of physiological, bio-
chemical, and molecular factors involved[J]. Agriculture, 2022,
12(5): 594,

[6] ARIF Y., SINGH P, SIDDIQUI H., et al. Salinity induced
physiological and biochemical changes in plants: An omic ap-
proach towards salt stress tolerance[J]. Plant Physiology
and Biochemistry, 2020, 156 64-77.

[7] YU Z P, DUAN X B, LUO L, et al. How plant hormones
mediate salt stress responses[]]. Trends in Plant Science,
2020, 25(11): 1 117-1 130.

[8] YANG Y Q. GUO Y. Unraveling salt stress signaling in



Wiz 3%, 4 SR F R 6 X £ 0

/N T S 1B 0 R TS R SR 1A 1Y R

803

9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(191

plants[J]. Journal of Integrative Plant Biology, 2018, 60
(9): 796-804.
SHAHID M A, SARKHOSH A, KHAN N, ez al. Insights
into the physiological and biochemical impacts of salt stress on
plant growth and development [ J]. Agronomy. 2020, 10
(7): 938.

KALEEM F, SHABIR G, ASLAM K, et al. An overview of
Present status

the genetics of plant response to salt stress:

and the way forward[]]. Applied Biochemistry and Bio-

technology s 2018, 186(2): 306-334.
FF 0 BL, DAL, ARAEZR. ER B a0 A W AR K Y R e KT

A ML T 5 gk
2 746,

HIELI]. - TREFN. 2020, 18(8): 2 741-
QI Q. MA S R, XU W D. Advances in the effects of salt
stress on plant growth and physiological mechanisms of salt
tolerance[ ] ]. Molecular Plant Breeding . 2020, 18 (8):
2 741-2 746.
ZENG Y L, LI L, YANG R R, et al. Contribution and dis-
tribution of inorganic ions and organic compounds to the os-
motic adjustment in Halostachys caspica response to salt
stress[J]. Scienti fic Reports, 2015, 5. 13 639.
GHOSH U K, ISLAM M N, SIDDIQUI M N, et al. Pro-
line, a multifaceted signalling molecule in plant responses to
abiotic stress: Understanding the physiological mechanisms
[J]. Plant Biology (Stuttgart, Germany), 2022, 24(2):
227-239.

ALVAREZ M E. SAVOURE A, SZABADOS L. Proline
metabolism as regulatory hub[J]. Trends in Plant Science
2022, 27(1): 39-55.

YANG S L, LAN S S, DENG F F, et al. Effects of calcium
and calmodulin antagonists on chilling stress-induced proline
accumulation in Jatropha curcas L[]]. Journal of Plant
Growth Regulation , 2016, 35(3): 815-826.
ZARATTINI M, FORLANI G. Toward unveiling the mech-
anisms for transcriptional regulation of proline biosynthesis in
the plant cell response to biotic and abiotic stress conditions
[J]. Frontiers in Plant Science, 2017, 8. 927.

KAUR G, ASTHIR B. Proline: A key player in plant abiotic
stress tolerance[ ] . Biologia Plantarum , 2015, 59(4): 609-
619.

MANSOUR M M F, ALI E F. Evaluation of proline func-
tions in saline conditions[J]. Phytochemistry, 2017, 140
52-68.

FIGUEROA-SOTO C G, VALENZUELA-SOTO E M. Gly-
cine betaine rather than acting only as an osmolyte also plays

a role as regulator in cellular metabolism [ J]. Biochimie .

2018, 147 89-97.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

KHAN M S, YU X, KIKUCHI A, er al. Genetic engineer-

ing of glycine betaine biosynthesis to enhance abiotic stress

tolerance in plants[J]. Plant Biotechnology . 2009, 26(1) ;

125-134.

YU X X, ZHANG W J, ZHANG Y, et al. The roles of

methyl jasmonate to stress in plants[J]. Functional Plant

Biology , 2019, 46(3): 197-212.

CHEONG J J, CHOI Y D. Methyl jasmonate as a vital sub-

stance in plants [ J]. Trends in Genetics, 2003, 19 (7):

409-413.

BoZ.w PR R KL S RN T RFR A KIRH
2 Y B (MLeT AD X R AR T ¢ K b 6 24 A R 4tk i S i [T,

Fi ¥, 2015, 34(1): 8-13.

YANG Y, CHANG D, WANG Y, et al. Effects of exoge-

nous JA and MeJA on seed germination and seeding physio-

logical characteristics of Gossypium hirsutum under salt

stress[J]. Seed, 2015, 34(1);: 8-13.
B AR, ] B, SR AMIERFT R R R K A R
ER 038 T A A AR M R A AR R S e [T ). A AR B A

. 2019, 55(9): 1 335-1 346.

SHAN Y S, DAI H H, HE X, et al. Effects of exogenous
methyl jasmonate and salicylic acid on physiological charac-
teristics and secondary metabolism of Atropa belladonna un-
der NaCl stress[ J]. Plant Physiology Journal, 2019. 55
(9): 1 335-1 346.

FAGHIH S, GHOBADI C, ZAREI A. Response of straw-
berry plant cv. ‘camarosa’ to salicylic acid and methyl jas-
monate application under salt stress condition[ J]. Journal of
Plant Growth Regulation, 2017, 36(3): 651-659.

BAILLY C, BENAMAR A, CORBINEAU F, et al. Chan-
ges in malondialdehyde content and in superoxide dismutase,
catalase and glutathione reductase activities in sunflower
seeds as related to deterioration during accelerated aging[]].
Physiologia Plantarum , 1996, 97(1):
SR V1 - O D O = B 5 S GRS i S A N
it gk B A R SR EMNR R AR,
2019, 39(1):

104-110.

254-264.

WANG F, HE QJ, ZHOU G S. Leaf water content at dif-
ferent positions and its relationship with photosynthesis when
consecutive drought treatments are applied to summer maize
from the 3-leaf stage[J]. Acta Ecologica Sinica, 2019, 39
(1): 254-264.

PLANCHET E, VERDU I, DELAHAIE J, et al. Abscisic
acid-induced nitric oxide and proline accumulation in inde-
pendent pathways under water-deficit stress during seedling
establishment in Medicago truncatula []]. Journal of Ex-

perimental Botany, 2014, 65(8): 2 161-2 170.



804 Wodt oMoy o iR 13 %
[29] #xe, B &, 32 W B@EWE T KRS SN/ T [36] MIHE . 4wk &R 30 %k H 5 A 0 41205 5% W 0 5
SRR R K Ca® /CaM (5 5[], #4244, 2020, (], A% AR, 2015, 51(7): 1 038-1 044.
41(5): 939-946. LIU F Z, YANG ] L. Effects of salt stress on osmotic regu-
YANG S L, YANG T, GONG M. Ca’" /CaM signaling in- lation of Glycyrrhiza uralensis callus[J]. Plant Physiology
volved in salicylic acid-induced Glycine betaine accumulation Journal » 2015, 51(7): 1 038-1 044,
in Jatropha curcas 1. under osmotic stress[J]. Chinese [37] HAMOUDA I, BADRI M, MEJRI M, et al. Salt tolerance
Journal of Tropical Crops, 2020, 41(5): 939-946. of Beta macrocarpa is associated with efficient osmotic ad-
[30] TISSUE DT, WRIGHT S J. Effect of seasonal water availa- justment and increased apoplastic water content[ J]. Plant
bility on phenology and the annual shoot carbohydrate cycle Biology (Stuttgart, Germany), 2016, 18(3) . 369-375.
of tropical forest shrubs[J]. Functional Ecology, 1995, 9 [38] SILVA EN, SILVEIRA ] A G, RODRIGUESCR F, et al.
(3): 518-527. Physiological adjustment to salt stress in Jatropha curcas is
[31] £ #, kAR, Fefh, & EHRSHESETH/NER associated with accumulation of salt ions, transport and selec-
FFR S H A A SC b7 B EE v R ()], A AR, 2014, 34 tivity of K, osmotic adjustment and K" /Na' homeostasis
(10): 2 539-2 547. [J1. Plant Biology (Stuttgart, Germany), 2015, 17(5):
WANG Y, ZHANG Y L, SU J W, et al. Potassium applica- 1 023-1 029.
tion for increased jasmonic acid content and defense enzyme [39] YU X, FEI P, XIE Z, et al. Effects of methyl jasmonate on
activities of wheat leaves infested by aphids[ J]. Acta Ecolog- growth, antioxidants, and carbon and nitrogen metabolism of
ica Sinica, 2014, 34(10) . 2 539-2 547. Glycyrrhiza uralensis under salt stress[ J]. Biologia Planta-
[32] SANCHEZ E. LOPEZ-LEFEBRE L R, GARCIA P C, et al. rum, 2019, 63: 89-96.
Proline metabolism in response to highest nitrogen dosages in [40] TAVALLALI V, KARIMI S. Methyl jasmonate enhances
green bean plants ( Phaseolus wulgaris L. cv. Strike) [J]. salt tolerance of almond rootstocks by regulating endogenous
Jowrnal of Plant Physiology, 2001, 158(5): 593-598. phytohormones. antioxidant activity and gas-exchangel[ ] ].
[33] YANG S L, CHEN K, WANG S S, ez al. Osmoregulation Jowrnal of Plant Physiology, 2019, 234/235. 98-105.
as a key factor in drought hardening-induced drought toler- [41] KARIMI R, GAVILI-KILANEH K, KHADIVI A. Methyl
ance in Jatropha curcas[]]. Biologia Plantarum ., 2015, 59 jasmonate promotes salinity adaptation responses in two gra-
(3): 529-536. pevine (Vitis vinifera 1.) cultivars differing in salt tolerance
[34] BRADFORD M M. A rapid and sensitive method for the [J]. Food Chemistry. 2022, 375; 131 667.
quantitation of microgram quantities of protein utilizing the [42] GAOZQ, GAO S, LI P X, et al. Exogenous methyl jas-
principle of protein-dye binding[[J]. Analytical Biochemis- monate promotes salt stress-induced growth inhibition and
try, 1976, 72(1-2) . 248-254. prioritizes defense response of Nitraria tangutorum Bobr.
[35] LIVAK K ], SCHMITTGEN T D. Analysis of relative gene [J]. Physiologia Plantarum » 2021, 172(1); 162-175.

expression data using real-time quantitative PCR and the

-AAC
2 T method[J]. Methods, 2001, 25(4); 402-408.

(3. KTI)



