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Abstract: To explore the interaction of iron (Fe) with phosphorus (P) deficiency and aluminum (Al tox-
icity coupling stress in acidic soil and its effects on Al tolerance of Cunninghamia lanceolata » we conducted
sand culture method with four treatments: Control (CK), Al stress (Al), P deficiency and Al toxicity
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coupling stress (—P-+ Al) and P deficiency and Al toxicity coupling stress without Fe (—P+ Al—Fe) un-
der controlled conditions in this study to investigate the effects of exogenous application of Fe on the
growth, photosynthetic physiology, Al and Fe contents and resistance physiology in leaves of C. lanceola-
ta seedlings under P deficiency and Al toxicity coupling stress by using superior genotype seedlings of C.
lanceolata YX11. The results showed that: (1) Al stress could significantly inhibit the growth of Chinese
fir seedlings, and the growth inhibition induced by Al was further aggravated by normal iron supply under
the coupling stress of phosphorus deficiency and aluminum toxicity (—P-+ Al), —P+ Al—Fe significantly
alleviated the growth inhibition induced by —P-+ Al treatment. (2) Compared with CK, the photosynthet-
ic pigment content, chlorophyll fluorescence parameters including maximal fluorescence (F, ), variable
fluorescence (F,), PSII potential photochemical activity (F,/F,), PSIl maximal photochemical efficien-
cy (F,/F.), photochemical quenching coefficient (¢P), actual maximum quantum yield (QY) and net
photosynthetic rate of Chinese fir leaves all decreased in different degrees under various stress treatments.
However, a more significantly decreasing amplitude of above indexes was observed in —P—+ Al treatment
as compared with —P-+ Al—Fe treatment. (3) The activities of SOD, POD, CAT and APX in leaves of
C. lanceolata were significantly increased under different stress condition when compared with CK, and
the increasing amplitude of these enzyme activities in —P-+ Al treatment was significantly lower than that
in —P-+ Al—Fe treatment, which in turn leads to higher accumulation of malondialdehyde in — P+ Al
treatment as resulted by the formation of hydrogen peroxide. (4) Different stress treatments all resulted in
a significantly higher accumulation of Al content in both roots and leaves of C. lanceolata seedlings as
compared with CK, while no significant difference of Al content was noted between —P+ Al—Fe and —P
-+ Al treatments. Moreover, a significantly higher of Fe content in both roots and leaves of C. lanceolata
seedlings was found in —P—+ Al treatment as compared with —P+ Al— Fe treatment. The above results
demonstrated that under phosphorus deficiency and aluminum toxicity coupling stress, compared with Fe
deficiency, normal Fe supply could significantly promote the accumulation of Fe in plants, thus the in-
crease of antioxidant enzyme activity was inhibited, and increased the accumulation of hydrogen peroxide,
which in turn caused degradation of photosynthetic pigments and irreversible damage to the plasma mem-
brane and photosynthetic reaction center, resulted in significant decrease of photosynthetic efficiency and
ultimately the growth inhibition induced by Al was aggravated.
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Fig. 1 Effect of iron on the growth of Cunninghamia lanceolata seedlings under phosphorus-aluminum coupling stress
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Fig. 2 Effect of iron on photosynthetic pigment content of C. lanceolata leaves under

phosphorus-aluminum coupling stress
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Table 1  Effect of iron on chlorophyll fluorescence parameters of C. [lanceolata leaves under phosphorus-aluminum coupling stress

AL B Treatment CK Al —P+Al —P+ Al—Fe

VIR #E F 45,4242, 98¢ 72.00243. 02b 81. 6244, 20a 62.4747.82b
BRHNF,, 224.3474-13.19a 195. 8415. 23b 113.0713. 89¢ 207.35413.57b
ARG F 184.3849. 96a 152.87412.88b 67.43+12. 84c 165.95+15.59b

PSI ek e iE: F/F, 4.0620. 16a 2.1220. 10¢ 0.8220.13d 2.67+0.10b
PSII etk F /F 0.8240.01a 0.7840.16b 0.5940. 05¢ 0.8040. 04ab
M=K REL gP 0.712£0. 04a 0.66=£0.04b 0.54=0.05¢ 0.6820.02b
Atk 24 R 25 NPQ 1.9040. 20a 2.20+0. 25b 0.9240. l4c 2.0740. 28ab
LR KE T8 QY 0.8340. 00a 0.7840.03a 0.4940. 14b 0.7940.03a

T« AT /NG 5 B AN [7] 4 78 AN [ b B 1) 22 55 38 25 (P <C0. 05) .

Note: The different normal letters within the same row indicate significant difference among treatments at 0. 05 level (P<C0. 05).
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