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Effect of Nitrogen Fertilizer on Carbon and Nitrogen Metabolism

of Two Poplar Varieties

DU Changjian, ZHANG Min, ZHANG Lei, HU Jianjun”
(State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and

Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry. Beijing 100091, China)

Abstract: ‘Danhong’ (Populus deltoides) and ‘ Tongliao 17 (Populus simonii) were used as materials,
and treatments with and without nitrogen fertilization were conducted in the field. The changes in growth
traits, carbon, and nitrogen-related metabolites, and transcriptome of the developing xylem were ana-
lyzed. The physiological mechanism of nitrogen fertilizer utilization in different poplar varieties was dis-
cussed, which laid a foundation for the genetic breeding of nitrogen efficient utilization of poplar. The re-
sults showed that: (1) The total biomass of ‘Danhong’ and ‘Tongliaol” poplar increased 1. 69 times and
1. 10 times, respectively, under nitrogen application treatment. The total biomass of ‘Danhong’ poplar
was 13 times higher than that of ‘Tongliao 1’ poplar under the condition of nitrogen fertilization and 10
times higher than that of ‘ Tongliao 1’ poplar under the condition of no nitrogen fertilization. (2) The
treatment of nitrogen fertilizer significantly inhibited the contents of total nitrogen and various hydrolyzed

amino acids in the bark and xylem of ‘Danhong’ and ‘Tongliao 17, but did not significantly affect the con-
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tents of total carbon, cellulose, hemicellulose, and lignin in the xylem. (3) Nitrogen fertilizer treatment

significantly affected the high expression of genes in carbon and nitrogen metabolic pathways such as car-

bon fixation, sugar metabolism, and amino acid synthesis in the developing xylem of two poplar species,

which resulted in biomass accumulation. In this study, we found that nitrogen application treatment sig-

nificantly promoted the high expression of genes related to the carbon and nitrogen metabolic pathways in

the developing xylem of poplar, thus promoting the accumulation of biomass and growth of poplar. The

wood yield of ‘Danhong’ poplar was much higher than that of ‘Tongliao 1”7 poplar under different nitrogen

environments, which was more suitable for large-scale promotion and planting of plantation.

Key words: poplar; amino acid; nitrogen fertilizer; growth traits; carbon and nitrogen metabolism
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Fig. 4 Difference analysis of hydrolyzed amino acid content
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Table 1 Statistical analysis of sequencing data

B A B i i ug s B EE T TCEIacES A3 {H Joig: B dle B GC &t
Condition Name Clean reads Reference genome mapping/ % Q,/% Q,/% Total data/Gb  Content/ %
S1 43 153 700 87.04 98.42 95.08 6.47 43.59
S1 46 094 392 87. 84 98. 34 94. 83 6.91 43. 64
S1 47 598 746 88. 06 98. 56 95. 39 7.14 43.76
N S2 44 664 436 87.28 98. 57 95.43 6.70 43.41
S2 42 544 716 86.73 98. 20 94. 50 6. 38 43.42
S2 45 885 416 86. 90 98. 62 95.55 6. 88 43.14
St 44 636 546 83.33 98.13 94. 48 6.7 43.46
S1 44 841 358 80. 36 98. 33 95.02 6.73 43.64
S1 44 457 688 82.77 98. 29 94. 83 6.67 43. 80
N S2 46 133 610 85. 56 98. 36 94. 95 6.92 43.77
S2 49 605 176 81.98 98. 18 94. 54 7.44 44. 30
S2 45 106 954 87.09 98. 30 94. 75 6.77 44. 00
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under fertilization and no fertilization conditions
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