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Research Progress of Epigenetic Regulation of Leaf Senescence

CHEN Ye, LIU Pingli”

(College of Biological Science and Technology. Beijing Forestry University, Beijing 100083, China)

Abstract: Leaf senescence is an important developmental process involving orderly disassembly of macro-

molecules for relocating nutrients from leaves to other developing organs and is critical for plant survival

and adaptation. Leal senescence is primarily regulated by plant development, but is also influenced by in-

ternal and external environmental factors. Leal senescence involves highly intricate regulatory networks

and multilayered regulatory mechanisms. Recent studies had shown that epigenetics was an important

mode of regulation of leaf senescence in plants. This review provided an overview of the known epigenetic

regulation of plant leaf senescence, including histone modifications, DNA methylation modification, ATP-

dependent chromatin remodeling and non-coding RNA mediated regulation. The future research trends in

this area were also prospected.
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Ji 38 R s, B AT AR DB B — A 4% HLER
S50 IO A VR4 ) 28 T I S EORS R T R i s
R R R CIE F F A AR, Y
WA R, KGR BB B S A DG BRI
(senescence associated genes, SAGs), HHI7EH{IEE
I VEK UNE BRI NEZ MY P E
S BT Bl SAGs . IF HXTECH A~ SAGs #:47 T
e s E S, X8 SAGs FEN AR K T 5
A F I B NAC,WRKY , AP2/EREBP . MYB,
DEILHL ZIP %5 5[4 T 508 5 10 51 £ B 5 46
Yt B ok B X SAGs F ) R A A B Y
RN o NAC #5581 F Rl WRKY % 5% K
TN EN g PR B TR,

MR e B 2 )R OO AR IR 4 AT LUTE B
TSR CRIE AN R S 2 KRS NAME S
PEATAE AN TR P L ST I 9 2 T 3k A R
WA Y M R B b R & BRSO
T35 1% 2 AN 22 DNA JF 31 (1918 B0 T fiff 36 R 3=
IR A AT 354G R AT AR ) — o 4 O 2, E A,
FEAHE B  DNA B AL ATP 4K ) 4y 64 5 B
IAAAE S RNA AP . HRTHFE E2 %
HETHER WAL, S BEAL T DNA i B 0E /Y B 5L
e G e 3 4 5 DAL 18 3 3 AT 52 i AL 400 A 1K R Y
(O N R R IR N3 O F S U EAIVE TR
RNA Bl B, HAE M 75 22 3 B vb i 98 422 4 T2 i
SUEAMTH EM . A4 RNA (ncRNAs) 2 — 3%
AN BHVE AR Y RNA, E A5 JE i 5/ RNAs
(small non-coding RNAs, sncRNAs) ., fif 7/ RNAs
(miRNAs, microRNAs) fl ;& & /M T #i RNAs
(trans-acting small interfering RNAs,ta-siRNAs) |
K4 E 9% 75 RNAs (long non-coding RNAs, IncR-
NAs) . ¥tk RNAs (circular RNAs, circRNAs) Fl
piRNAs(Piwi-interacting RNAs) &, EfI#E Y
ARRE I DL R Ty R AR
ARSCERIR T R WM AL AP M g g B rh R
WEFEEJE , LUA ik — 25 0 E Al W) i e 5 58 1 3R WL st
TP .

1 HEABWHREED TR EE

4145 1 (Histone) J& — F A LAl DNA 254 11
B 2R L 7R EAZ A Y A A% b, 41 8 (1R DNA St
[Fi) 20 B e €5 5 1) B AR BA 0 A% /NAC, H2A L H2B, H3
FH4 4 M2 P AR T AN BT VRAK,
Y1 FE 1R HB I B 1 4 R S A A% MR R T, B AT

Z BN L T LLTEAS [R] i 9 4 F R 4T H Ak
R AL . & WAL Rz R AL 5 4 B B, AR RV
PG, 8 o R SR i

1.1 AEEHFEL

ERmE T AEA AT EAETEHAEA
H3 B & R 7% 5 4 (K4) .9 (K9).,27 (K27) Fl 36
(K36) s, M IHH T4 8HE A H3K4 Al H3K36
FH 5 b 5 A1 1 e SR 0 AR AH G L 1T 28 2 1 H3K9 K&
H3K27 B AL 5 56 R A LBk A 56 . Z IR 5T
FW L H3K4me3 A LU TG SAGs 33k M 7 i A
SR 5 2 o R b ke T B R 45 T, H3K 27 me3
W LAAH B2 i 07 ok P8 3 SAGs By £k, WRKY53
JEPR N R R R R . Ay 5T
K THEAF B SR A =20 K, i
T EBBE & M IT it i &, # 5 I+ WRKYS3
FE G % X 5" b, 4R A OH L H3K4me2 Al
H3K4me3 {554 B W1, WRK Y53 K& % 5% 1
WAk, Brusslan 255 s X i 24 0 5 % 1 100/ 5 o
Fh 4 3 B i H3K4me3 Fil H3K27me3 5 5& A
RIBKFMRRZIT TR . KA g
FE SRR H3K4me3 A5 3 84 m, 0 3k B
H3K4me3 tric i /b, ik 2 H3K27me3 fric 1Y 2
HAE 2B T 1, D% H3K27me3 fric 34 0
(3 R e 2 0 P A K R . Yan 2550 A
FH'T ChIP-Seq & RNA-Seq WF5% T S W5 k30 F 420 pg
FEmE R b 3k R 4LV BN H3Kd4Ame3 B9 43 A, LL &
H3K4me3 H5HEPFRIL KR, M7 R B4 Bk
S M At H3K4me3 #5300 50 & % 1k F 5 i,
H3K4me3 tricd iy W T2 S 5k &, &
SO L PR A FE 5 2 A G R I WRKY6 . SAGI13 Al
SAGIOI , VA J 5 W15 5 % B A X B ABIS |
EIN3 I ORE1. #f 5% 45 ¥ W] H3Kdme3 7£
SAGs WG R bR 8 T HEWMIER . IF B B H
P RAR IS 5 R 1 i 5 8 2 M) A7 7E 6 A BN 2K
(cross-talk) ,

O H AR B2 A\ AP SRR
(histone methyltransferases, HMTs) 14l 45 14 2= FH
FL AL W Chistone demethylases, HDMs) 3 [/] 4t 5, £
AMF5E B HMTs fl HDMs 25 7 M F 282 19 4
¥, SUVH2 & T HMTs, H g % 35 F 8 H3K9,
H3K27 S Ye o i i S fb bric s . Ay &2 & 3
SUVH2 i ik WRKY53 5 () H3K27me2
Ml H3K27me3 #ric /K -F- It & 28 WRKYS53 Je H T
W Z A I SIRK \SAG101 \LANAC083 .SAGI2
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H SAG24 (2 B, it i Bl B AEIR . Ay
25 3 qRT-PCR 407 & Bid % ik SUVH2 5
50 Y0 HEE AN SIS R R 1 e ak  Horp S B A B
¥ % i AP2-EREBP.C2H2.NAC fl WRKY %
sty B % . A A X AL E HDMs f]
PLAr i 2 R 28 7. JMJs (JmjC domain-containing
proteins) Fll LSD1 (lysine-specific demethylase 1),
Wang 2 76 LB JF b & L2 2 11 H3K27me3 £
H R AL R REF6/JMJ12., n] LLaE i 25 B AL 376
R R S5 #9540 EIN2  OREL . NAP |
PPDK .LOX1 1 NTL9 4535, IE [ W0t R
W%, Liu S5 & B4 & A £ W Lkl TMI16 78
I I v 3 #%  WRK Y53 Hl SAG201 7 /5 1
H3K4me3 7K, 41 il 13 46 3 PR {4 312 1 36 38 L i i
HEHARWEAMEM, Ding &5 EW T HMAEA
X AL SITMI4 1y & 3% 35 4 2k JR 5 fil ABA 5
ST R, AR R, SIIMTA i kB
H3K27me3 fi¢ #F§% 52 [ F SIORE1 \SINAP2 %
EA K I N SISAGI13 . SISAG12 1) 3 35 2 ik 5
. W ABA B, SIIMJ4 0] DL AR bR 3 A
SIABI5 SINCED3 45 %% 40 X 3 [ 1) H3K27me3
K BIEENRE N T ABA BRI EE.

XI5 AR R AR Y i R R A
Heqb A2 B O3 AR A R 5L B AM Yan %5 F Ding
S SE R PR AR IR A SR R AN AL E
HOJEfEAE SRS AT ABA i M g 2 i B b Ay
Z: 5 % T 4188 1 AR08 A A Al R 3R 45 R e
o 2 A S R P AR R4S T IR AR SE
1.2 HAZERZEWK

B T 48 3R . £ Bkt e — Rl 2
M2 2 s 20, A8 S kAL R IR SO
AR EOBACSIRHNTUIRA . REEZ R ER .
4 & 1 £ Bk # B Chistone acetyltransferase,
HATs) fl2H 5 H 2= Z Bt L i Chistone deacetylases,
HDACs) L [FEH & 5 HEmMY i h =g .

Brusslan %5 | F| ChIP-Seq K RNA-Seq #f
FET IR OF & & o 2 0 B b S R s E) g R
H3K9ac Al H3K4me3 i = B, fth 7] & B K35 43 £
Z FRA S IE R # A H3K9ac Al H3K4me3 Fric .
fbfiT38 % B SAGs JE ) H3K9ac 7K -7 3 % 7 1
Wb E R E NI BB, X5 H3K4me3
IKF 145 B0 AH 2, H3K4me3 7K -3 3 75 % % 1 5
IR B AR o 75 25 22 Wy BESS R 2 B fm . 41 1A
FRic fEE AN B b s, 4R, SAGs JH

Fl H3K4me3 fric B 55 14 3 B X389 5F- 24 800 LT
#& H3K9ac tric B3 09 2 5. % i X S ik il
A2y 3 A F JE: RPD3/HDA1L, HD2 il SIR2MY ,
AtHD1 2 —FHE 15 LB kB, Tian 552 852
R AtHDY A9 2 8 78 s SO il 5 56 DAL A vk CASH
WY HA A8 H S AL AR R R A
AtHDI1 B T-DNA 4 A % 28 {5 i 3 £ Bt Ak K
FGy 0 A ) ) B R Y HDAG R K £
WAL B B — Fb R AR Wu 5N BBF ST, RS OT
HDAG6 e A8 R H H3 LWL /K im F 54
R, EH I SAGI2 FI SEN4 fy ik T, it
FEEZER, £ HDA6 25 TlE I E80
¥, HDA9 B4 & 1 X LWL B, B 5 IF hda9
il pwr RASK AR ZMEMBREH ST EZIER,
Chen 25 [l 55 2 W] HDA9 & 115 PWR Fl 5
K WRKY53 — i if LB 2 5w 2 @2 i
PP H3K27ac fic s NI & T By 3k,
X R oK S B AT i I DR I A o ke 42
F %%, Huang 400 9% % B HDALS 5 2A 4%
DNA 254 & 11 WHIRLY1 B AE, 2 85 & 5% 16 57 5
PR 5 2 A G 5L WRK Y53 5 3 F X 19 H3K9ac,
NIE LK NS E S P AINE (K I o

AR T CBP/p300 HAT Kk BA HE 1 Lt
SR IS M, B K A4S HACL, HAC2,
HAC4 ., HACS Ml HAC12, Li 257 W58 & B, 2 Bt
M AtHACL (9 T-DNA i A28 ki i B A
MR R BT AT AtHAC 381K X 205 & 1
TR, E R 7 3 28 19 M Wil 1 I F- Cethylene re-
sponse factors, ERFs) fJ & ik /K *F © 8, 3 U]
AtHACT S5H% A 5% Z M 56, Hinckley %5 F
Fl ChIP-seq %5E H 43 N A 2 B HACT
(AT BERL AR P 8 bR ERF022 J& M A % % 1Y 1IF
EHRF, UL RSERTHEA B — £ 0
WA HLHIAE T R R A EEAEA

B 7 XL RS O 2 B 1 SRR AR I R AR
FHBWESE , FoA B UL AE P o B A 8 S Ak
VERWAEAS 1 . Zhang 465 FH ChIP 4347 7 /K
Fe e I 2 N ] By B H3K 9ac 1Y 4x 55 I8 41 & 4B 1%
B . Bl KA Y 5 2, A B 4] H3K9ac B
B3, G X 5 H3K9ac A3 25 36 A R
AYAT R IR B R G Bk TR 36 3K 1 0L H3K 9ac 7K
AW A E A OGO R L I B H3K9ac AH G Y KL A
FEZH T EEMAMAGF @K, Hx THEZ
R 3 AL R 2 R AR 1% 9 4 VR B 5
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A DLE S AR ST O [, B A T M 1A i R 2 A
i v WL s AL LR A9 4
1.3 HMhBHZEBMEM

Br 1A AL Ol AL A AR B HoAd SR A
7 AR AL Az R eSS T MM
AWM, HEANBERIAL S A Z2E R IR
2 R s 2 R, AT A 2 1 RO ) P T B AL T
WA 25 B R AL L BOAR E R W I i 2
HEABREZSS THEY M R Z2imiEE, B2 5/
A PO A R AL B O S A e R AR
ELAR IR G R T U I A 2R R AL T
Z 5T HY e i R L R

H2A 25— & A v DLz R A g n
HEN . HAEAZEMBME X ELZ R EE# E2
LRSS G E3 2 RN, MR RA 2
PR g hs E1 M i 4B £2 F1E3 B9 K 23 B 41 A
1 300 Z A", Polycomb & 1 & & & (Polycomb
group proteins) il i3 2 £ &M , £F & WL st 1% 77 1f
BHEF ZEAE AR PRC1 E AW EA
H2A iz R AL E3 % H /% 4, vl LU AL H2A 2 R
B BMITA 2% 8 A WA R 2 — . BF 98 % W
HEH H2A WEZRABHS 5 T g2
2. Chen %" 7 E R P WFSX R B, 20615 5 ik 12
G HE R 3 N 1 EIN3 /T i 8 5 I SOWRK Y50
Wik 5 SbBMITA H AR, #E i 4 5% PRCL 5 it 4%
R O EE I E A B H2Aub &4, M
il TR AR B TR i, B
HAEICTHEAZRUS Sy g2 HENE
BAESRBD AHAU R T M R gk R E3 2 R %
B 5 %72 £ 1L ¥ (deubiquitination enzymes,
DUB)#E $1 T — 5 i P #2 7 HI L Bz &k
Z 5 TR 2 R BAE Az KB
B A0 A 42 B 2 e b ) BAR AR RS (7 3
—B R . Sy AN Iz A A A A & A ]
FLAT AL A S 58 2 42 3 Al o 5 4 T
REJE 20 A H Iz R AL R A W i o 2 1) — Tl ] 422
T

2 DNA WLyt

DNA B 34k (DNA methylation) 7£ 44 4 &
JIZAFAE i DNA B IEFEFE I (DNA methyltrans-
ferase, DMT)fi#fk. DNA J#%1 E CG,CHG.CHH
(HJ& AT 8¢ C)3 2 o5 b iy M ms we v] D) &k 2B
i, 2 5iRENHEAE B A . METL,

CMT3 Fl DMRs™ , DNA H AL AT DL & A 75 5% )3
F(TF)FHREL)FH LA EE 75 DU R 4i+5 7
Yoo 25K FaoE . DNA B A0 AT D ek 48 L R s 3
-5 B DX ) HE R Ak KT 3 I 5 e 3 TR A ik TR
THISEGRE NS, BRTHFsE K. DNA H 3L L
e & AE Y R R,

Ogneva 255 BF 58 T L /5 IF 5 4F 1% M 26 M9
DNA H B8 R i 5 [ (A:METI . AtDRM1 1 At-
DRM2) 1% W 1 AL il & Kl CAtROS1 . AtDME | At~
DML2 1 AtDML3) W KBGO, BEE w2,
DNA 2 B 5L Ak il 3 PR 1) 3¢ 35 1 B 8 o 4 ik 49
1 DNA L5 5% i 3 9 2 80 A0 I i ek B =X,
UEIIAE R JT M s B DNA 25 A Y
25, Dou %5 X A A6 &y nb A 0 4 3k N 41
DNA H HAL K47 T 43, 5% 1 DNA H
FALK T 2t 9 P59 9 4~ DNA B JE 4%
FEBEAR KL A 2 4> DNA 2 F 3 5% B2 il A ¢ 32 (A
PR TE R T, R DNA H 34k
TP AR IR T 0 R . AR A AR R KU Bk
R L A R 5o B DNA B JE A6 K F 1
MG FIRFS Z B R F,/F, A B, 3
HIZE RN AR B9 1EB0F L DNA LA m 17 ik Bt &
i ERAE E RS MOk Z 5T £ W] DNA H
S5 w2 M CEN Z WA —E MK R, He
SEUT s AR I P — N % T NMR19, MR
HoAE 3 A bR [ 4y o NMR19-4 Al
NMR19-16, H it NMR19-4 f4 B A4 ) 1 98 45 -
FEZWN PPH FRE, Zm T it Z &
B, E R %, Yuan &5 BB 5T B
DNA 2z 3 AL B 5 ] DML3 8 #2300/ o7 M A 5
& KA A& B dml3 iR SRR AR 2 SAGs
Ja B0 1 e B R AR S BOL e SR AR, 1 A i
PR AR, Li S0 B 5E T SR R R
DNA H AL A 1L, & B DNA H 34k #% 78 il 5 A
BcMETI \BeSUVH4 . BeDRM2 . BeRDR2 F1 BeC-
MT3 () F2 3k B i f B[] 4E K 177 32 8 T B, 11 DNA
F AR IE N (BeROST) I R AR, &
FH AL R) 5-Aza Kb FR S 0 R b 5 b2 3K R
AF G 1 T I% 1 32 W e, I AR L A DG BRI
BcSAGI12 ,BeNYCI  BeSGRI . BeSGR2 4 1 3% ik
W B B, TR B M BeSGR2 Ml BeSAGI12
Jash F X BT B B DNA X H 3k, ®# T
SRR B A G R R i R A 5 DNA &
HEALAOC, DL ESEm g A IEY] T DNA W 24k
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FAER LIS A Sl S i ¥ I P i
M1 . & A7 TEs B9 DNA B &b xnf B 5%
FAARAE AV A AT 2 — 2B B 5% .

EAEE R . DNA H 3L 54 & (B hIE A
J2 5% A A B ST Y SRSt AL s O 2L B a4 e T
metl-1 AR H E H H3K9me 155 B 08 55 ,
X — 25 B E R TE met] -3 28748 4K b IE ] DNA
HI AL 2 0 T 20 8 11 H3K9me B9 K 53 4h
PUEE I B 1L S LB HDAG A 4E+F CHG i 4%
DNA H AL VE R A BIBE IT Athdab ZE 78 1R,
CHG H 3 Ak 7K 7 Bt B A Ui I DNA 354k 1
HEFRK T HDAG, 5418 (1 £ W4k K 7 B AL W)
LR PUER . Y DNA B JEAL 5 41 8 7118 1 1] 56
FEY) LR AW AL Y0 B R DNA 3
AR B A e [ R A ML AT T AR A
I 3 4 2 W3t 7 R 4% 10 S BRI 5 O 1l 2 —

3 ATP RO AY J (4 5 8 JE P A )
MR

Y e, JTT 45 A6 1Y) 5 B & LR e Sk I 5 DNA
S545 BB . NI LA AR W AE T A AR b R AR
AP it DNA 38 o] 8230 v i AL bR T ik 2
B 2H 3 A M B DNA I EAL RUAE , i8] L) sE
i ATP i 1 Y €4 )i F 93 (chromatin remodeling)
S, ATP R YL IR YA i ATP /K fff 42 {1t
e EROATEBE SIS ST, DE/MMETE
DNA [#3h. 5 DNA fi# 8 LB ge 57 I Y4 &
F N RAK DL e 40 28 A8 AR 5 e o 38 1 s e iy A
A 5 2 PR AR Y £ BT 25 A DT o s e 5 B S I
TAEH YA 5 DNA 5 38 A4 v 82 305 P, 8 1 8006 =
TORIAR G HE R A 5 S e R E A W R
TEBERE P o % 3, th ATP A% 0 W0 3 FH: At 37 5
20, AR 3 R AR AE RS ATP B A% .0 W B K
Yeto R AW A SWI/SNFLISWI, Ino80 Al
CHD 4 4> % G, SWI/SNF % Ji% 1 SWI2/
SNF2 % 15 SNF5.SWP73 #il SWI3 W k40 %,
AAHEEAE 1) ATP B A% .0 W3 SWI2/SNF2
HUO D HETEM IR RS E T 41 NS A ATP
il 2% ¥ 388 19 3 14 L 43 K Snf2-like, Swrl-like, Rad54-
like % A [ & . H o Snf2-like R & X 4 0 R
SWI2/SNF2. Lsh. Iswi. Chdl Hl Mi-2 W % j&"*" .
Xf SWI2 /SNF2 WK W i A — & WF 52, 45
SYD.BRM,CHRI12,CHR2,DDM1.DRM1 % Jt &,
JREMPN T, T CIN-TCP it 34t 4

F#E#  Efroni 21 #F5e 48 L R IF SWI2/SNF2
FIEM L BRM 5200 T % 5+ CIN-TCP X 4ii g
Sy E BN, #E BRM ) BE Bk 2% B 480 e T 58 A8 1A
H UL T R R I A I, Li AT g
Hi, & B BRM B 4% 80 1) A T 2 2 M G i A
SAG21 .SAG101 \SAULI1 %, 5% &b H3K27 2= H %
fii REF6 £ #F BRM #9354 , (&% H3K27me3 /K F
B S, H BRM 5 REF6 2 A7 58 Z K i 5L A,
. REF6 7] i 5 & BRM [ SWI/SNF & & & —
AL o i SAGs FH R e 6 5 25 4 L 3 1 7E 22 0
WL LI R, S MK EE K B DRDL
DDM1 058 £ W 5 50t B 5 Z i ¥ . Cho %7
W RN ST drdl-6 .ddml-2 FEAE A F 1
W EIER L, IF H SAGs 3532 3] B A
A ATTIN R SWI2/SNF2 Yefa 5t 8 9 53 5 Pyl 1k %
Wi e itE S 50 F g E i . AT-hook motif
JEd AL SWI/SNF g — A~ i 4k 3 o 7 27, Lim
AL s AU TGS ORE7 /ESC 1 3% 15 (ff f bk 1 20 3¢
ZHE R, ORE7/ESC 3 X ] 4 i 2 47 AT-hook
motif M8 BT, B2 T 9 68 TR 4 R AR L 5 e T
TG L R 1 Gk KOF R A T IA S ORE7/
ESC i 4w B AT-hook motif By 1 5, i Yu
(o E W L SRR TR R . ATP K
et TR P T R A AR
BOAMRTUENR, fEOREBRE A SHAEN
e B e DR A A i o S O TR R T Ay, — T
11 2126 L LM B s i e (4 R IR R A s L D
— S5 Y@ 5 E A A YR SRR e
BARS: 8 £ W T BRM.DRD1 Al DDM1 %5 4L 4,
GRS e (N W A= It O R (2t I IEMER N
(A FH O 2C A B B 22 300 G 06 o b 14 A R AT o 23—
BT .

4 B85 RNA /v SR EME Y
B
4.1 dE4®/ RNAs 50t FZ=#iF#E

AE % % /) RNAs (small non-coding RNAs,
sncRNAs) 7E A 1) 2 P Rk 45 b oA 2 AE A,
B mRINA J 3% a8 B 5 40 1) 75 e 5% 5l 55 OKF
PH AR R R FR A L HE AN W] 0 A2 ik 7 2 5 0 )
ARKEFEER TIHEEN, HET7E g2 WE 7
HFRBE LM sncRNAs & miRNAs Fll ta-siRNAs,
4.1.1 miRNAs S H5iEZEEYHFREEZ MicroR-
NAs(miRNAs) & 7E 8 ¥ AE W) 1 732 47 46 1 9 R
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PN RNA, KR 18~24 M EHFR™ . KB T
1993 4FEH Wightman 27 #l Lee £ 7 75 i Fa AT
2% L (Caenorhabditis elegans) W & B, Bl J5 2002
4F Reinhart % 740 fg JF FE W] T miRNAs Al B
HEIETH Y b, miRNAs £ 5 76 30 ¥ F A 9 vh 1
fo BE AR SF L g D) ) 3 T mRNA TE 5% 58 I K F
P RGA . BlE /N RNA T B I = il 2
AW R R R L B 2 AR T 22 Al W) b O Ak R
miRNAs"™ . RALFE L IF b 0 2 % oK &
miRNAs, Xu &7 e KR g% Ao L 162
A miRNAs, I 5858 53 B ) H S8 FE P T g 55 i
FrgE A s Wu 200 78 SOk M Fop S i 81 A4
miRNAs, i 16 4~ miRNAs 2 5 %8 5 5%
I,

I 21 2 A0, ATTHEINAR 2 B9 miRNAs 7] G
#Z 5 e B n R H T IRA B DRE S B
# miRNAs 3 A~ £, miR164, miR319, miR840 Fl
miR396 JEAH Y P F 58 13 B IR A M BIE 5 2 5 4
Yyt F g 0 miRNAs, miR164 € 76 #L 55 JF
Fhpl GIE 528 ) R 4 NAC B 5t 1 % . Kim
UG T H OREL .miR164 F1 EIN2 41 5 ™
KR R 2 R HLH, AT R = RO
miR164 454 % ORE1/AtNAC2 B mRNA F, 41
il ZIEm RN T NAC2 R, MEMN &
% ,EIN2 %3k F#L.EIN2 ¥ miR164 {fi H 3k
Ik FEAK, Rl NAC2 B335 38 m JOmi f2 2F 7 3 R
TP R B R, L U g kB M B,
EIN2 T N T EIN3 0% 5K 738 5
EIN3 & 08 5 miR164 J5 3) 125 & 40 il o 5%,
[ 3f miR164 FRIER NAC2 ) 3% 3k i it o 5
% ,EIN2-EIN3-miR164-NAC2 Ht [7] #4 5 T ¥ 75
MRS S B, Wen ZE55 ) 03 B 45 A
Xof &y P A S AR SF miRNAs 2635 17 00 #4720 47
GEWR R B R miR164 fEGh M Bl F k.
i i W A e R e L A B LFNACT fLFNACI00
J& {fomiR164b WL, JF H L/ANACI 7] DLf i
MR BRI LISGR W1k, SClas Ui,
miR164 TE) M M6 LANACT 2R3k, b & 2=
TIAEAL miR164 B8 F M. LFNACI G M A 5
EMKEH S & UES T “miR164-NAC”
X AT Bk I 2 8 R A .k 2 S 6 45 SR IE ]
miR164 X I 73 2 1 1F ] 8 424 H

miR319 W2 MR NEA NS SHEY M
ZFEM miRNAs Z—. 58 £ B4R IF miR319

i EH T 5P ERK KB MK TCPs 5% H
FE . Schommer 2555 3l 1 #4091 B H R % E
T 5 A% miR319 #1  #5  TCPs 8 W 5t
Hip TCP4 IE 4 # % (Gasmonates, JA) LW &
WORHEFE T LOX2 R 3E JA 29 A nl, i 1 18
MY % . Koyama %7 W WG T miR319
M TCPs # W FAEM i Z 2 B h e . 158
KB AL M IF TCP3, TCP4 H: N T % ik Ll &
mir319a/b RAKRMERE T L H R AL, m
tep3/4/10 Ftep3/4/5/10/13/17 RAKRFH H
FEIR i F B AL BB miR319 Ml TCP P 575 5]
) TCPs Kk ERPE T ¥, BT ELHE
FEX AR A Y P SE T miR319 M A E
YER, Zhu %59 % B, 39 JTCRE 3 i 58 48 fk np J o
miR319 5K - i, i BF A RUA Kk Ul ApTCP2
BE s K -T2 s Apm TCP2 M ApTCP2 5 miR319
750 H AN AR B 3G TR ApTCP2 il Apm TCP2
43 SIAE LR IF B A2 B jaw-d €738 KR bR o R
KJE s jaw-d AR H miR319 1t F ik 51§ &=
L AN S TA AW G B A OC 3E IH 2 k 3
MR T EERNS, U ELRE RS UELT
miR319 4 TCPs WHLHITE M 73 & K HEH .

miR840 % F. 11 Rajagopalan 25" 7¢ #l 1 I%
i o v A AR R I AFOE k. miR840 B 3
Wz — 25/ 2 &l HF WHYL [F— 3 H
F G ) WHIRLY3 (WHY3), #L 8 JF & MIR840
(AT 2GO274 DN T E ARSI PPR (AT 2G02750)
M WHY3 (AT 2G02740) W36 43 & 1Y 3" UTR, K Ik
HEM PPR F1 WHY3 W& #6J2& miR840 WHlHE 5
Ath-MIR840 Wy B %4 7= ¥ £ % H miRs40™
miR840, Ren %Y 58 T miR840 4+ F PPR I
WHY3 e W) R 58 2% v i W 4 1. Bl I
miR840 ik & WA 1Y )3 3 7 & 2 1k SALK _
038777 1A ZR MR I R 1) 2% €0 2% 0 LR 4R of [) BT 5 i
miR840 1t F ik M bk SAIL 232 F08 5748 {k it
NP B R M4, H SAGI2 F1 SAGI01 %%
FEEASCIE N Ak I BB, BFIT A R R
M H g Z iR F PPR %35 5 miR840 % 5K
(S BR b JE miR840 ™) Z [A] A7 78 AR 5 1) f AH G 5
miR840 1K FEH T WHY3 & A B T %
HAEMHER R ERE, B2 AT R miR-
NAS840 ¥ J5) PPR 1 WHY3 J: Ny #E S 3' UTR
X, Lk miR840 " ~-PPR 1 miR840-WHY3 J7 1 [Fl
Rl s
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H K T 7 (growth-regulating factors,
GRFs) AW e S e e 5 4 7 SAHBEAE T 5
(GRF-interacting factors,GIFs) & &% ,GRFs
Fik A2 miR396 W 5. M B IT GRF3 Xf
miR396 AU, GIF1 33k K1y fm it Jr 2 2 4
B miR396 i 3k ] W] 1 5 3 e E AR OCHE K SENT
Fl SEN4 )3 3i5, miR396-GRF-GIF W& %2 T
MR R L R P B miRNAs S0 Pk,
% miRNAs 1EM 7 3 2 b il 2 7E FE R E IR A
5T
4.1.2 tasiRNASEEEEYHAEREZ KA /D
T4t RNAs (trans-acting small interfering RNAs,
ta-siRNAs) J& K EE Ol 21 S8 BRIy 1 TR 1 siR-
NA, ta-siRNAs fJJE B 5 miRNAs A £, ta-siR-
NAs i TAS H =4 , ta-siRNA JEH 3 (TAS) I
R DR G 55 & A RNA B S U E & 4 (RNA-
induced silencing complex, RISC) FJ Argonaute
(AGOY R B U1 #1 5 5 %5 2 19 miRNA 454, 18
RNA {5 RNA 45 (RDR6) B /E T 7 A= W
£ RNAs(dsRNAs) . 7E# DCL 45 H 24 i# 5 4 i ta-
siRNAs™, ta-siRNAs il miRNAs — Ff 58 i #0 i)
GEA A EAMY S mRNA RN ERL, H
A A AEAE Y T S 1 T 4 DGR T ta-siRNAs [
AR TAS1 . TAS2 . TAS3 1 TAS4, H:¥h TAS3
LI miRNA390 #8181 H 7™ 2 TAS3-ta-siR-
NA i TAS3-ta-siRNA FHEHE R4 15 A K R R
HWF ARF2 \ARF3 Fl ARF4 , 0] LA 51 AH i J K Y
mRNA [ fif 41 i 2355 . ta-siRNAs A LL Al
miRNAs [ i 8 o) 98 428 [7] — Jk P 5206 19 22 A ik ]
b IEMEEY M R 2 d S miRNAs £ 41
A E RS,

4.2 Ki#EIEHL RNA 5/ FEEFE

K #9918 RNAs(long non-coding RNAs, In-
cRNAs) & — K A K ERT 200 & H KM
ncRNA 7 T 200 il 4% 5540 M 5T rb 58 249 4% 8 1 7
F 7T R HL A S DN 4 M AT SR O X
IncRNAs (sense IncRNAs) | & ¥ IncRNAs Canti-
sense IncRNAs) . X 5] IncRNAs (bidirectional In-
cRNAs) . Z K 7] IncRNAs (intergenic IncRNAs) Fl
N4 F IncRNAs (introic IncRNAs) 5 2657 ¥ i
XF IncRNAs HWF5E 32 24 b A 3L sh W i A= Kk
B E A KR E LR AE A S g S
K IncRNAs R 38 52 W= 55 s A A X
DR SE D B k0 L AT AR R B A il

AR & P IncRNAs B9 HE FAE A AL
il LB T B AR A R T IneRNAs fEA Y - 3 3%
AR EEEH., Huang AEDOV SE ok A BRI A
3 I X K R P o L AR R Y IneRNAs 47
TR, TEKRE N IEF B E W 5 A& F B By i
Rk 3 953 4 IneRNAs, Hirp 5 5 %
TE ARG 9 22 5 2 35 IncRNAs 43 %Il g 22 A F1 48
A, X ZE R RIKM IncRNAs #L[i mRNA 1, —
L T B = e (R 2 P R S i s
Ut H AR (SAGs) . R T EMER In-
cRNASs i i 1 # K i 3 A0 & mRNA 52 760 5
HHEABR P REREEM, Li S R R
Y 160 N b 22 5 K351 IncRNAs, X
B 1ncRNAs # #%5 B mRNAs KZ 8 E/EEE
ER iz EASES 5t 2 WEmmEe b,
SNBSS KRBT 2 A IE AR I A £ Y IneRNA .
MSTRG. 16920 1 MSTRG. 7613, il 45 %% 5
filiiX 2 4> IncRNA UUER . 120 s AL 3R )5 Ui Bk F
R R It 35 B A TR A PR I o ISR L 5 A OGS
SISAGI2 By K3k W B B T ;b {7118 & 3
MSTRG. 16920 Ut B HH # 7 NAC # 3 A T
Solyc02g069960 MSTRG. 7613 L 2k () 44 #k v 1
SE ALY HE D Solyc06g050440 Y2235 7K S4B WA
TFE, R T IncRNAs W] B8 18 i< 510 1) 8 92 55 2 K 1
Al A ALY AL Y R 3k I R
IncRNAs #2577 RNA [8] A0 B AEF 8 8L
il s Leonardo 2 452 Hy 1 35 4 N I RNAs(com-
peting endogenous RNAs,ceRNAs) /i, mRNAs,
IncRNAs Fll circRNAs fE 5 ceRNAs =41 5
miRNAs 254, Bk miRNAs #9400 %1/, b 8 e
FEH R IRIKE AT — A SE R 2R 35 T = B AE W
%, IncRNA-miRNA-mRNA 5l J& 5.1 M 2 1 X 2
—, IncRNA-miRNA-mRNA F%% % 5 T # 4) H H
FEE MR Huang %5 20 Fr 7 98 458 2K R e - 5
Z ) IncRNA-miRNA-mRNA R 2% , i & i 19 22 5
iKW IncRNAs #1,6 MEFR A IncRNAs 7] fE 1l
i 15 4> miRNAs J## 51 3R E Y mRNAs, 14
ANE A M) IncRNAs 7] figil i 21 4~ miRNAs
117 A3 R IAA mRNAs; £ L E H ) IncRNA
MSTRG. 62092. 1 865 miR164a Fl miR164e %5
A ARG R SN T NAC KM MYB % & Y
mRNA £ B K UEH T IncRNA-miRNA-mR-
NA ¥ 46 8 45 K R E T 58 % . Sun 2507 5l 5 %) K
R ERTIRMPFTEIET IncRNA-miRNA-mR-



6 4] Wi M5 SRV AR IR AR A T S B BT 5 1075

NA Xf i 7 B B 454 . 1) e s 4 4 B K Fi
Z) TE % R 2 -es T8 GEAR A 2 UM Bk 1
SRR IKRIE O, e A AE 25 7 R KM IncRNAs, miR-
NAs,.mRNAs Hr 4t 15 25519 190 X mRNA-
IncRNA 1 3 391 %} mRNA-miRNA, 3 i %} iX 4
mRNAs #F 17 I fig 0 7 » IncRNA-miRNA-mRNA
W 28 55 it B AR G 2 FARI R AR A G,
IESE T IncRNAs fE R ceRNAs 1#48 ® 2% 19— &5 »
Z 5K zj-es SRR L,
4.3 IR RNAs SMHREREIFEE

Rk RNAsCcircular RNAs, cireRNAs) 2 3JE
il RNA i) —2 2 TR mRNA 2 J ] 57 5]
53 5 B A FORZE 8 B9 RNA 40 7%, cireRNAs
A 20 28 70 AR B R B, (H 2 i) H
N R EE R ALY T, cireRNAs 1889
Iz AR B B AR E Tk R A DR S M R A SRR
SHRBWR A ERBERENTFEREREOLRT,
MOk £ 1) cireRNAs K H I fig 9 A AT % BLAF
5% ,circRNAs B A7 miRNAs 45, 5 RNA 454
I ELAE | RH I AR 1T L R A SR R AR AR I A
fgtons,

circRNAs .52 —Ff ceRNAs, # 33 circRNA-miR-
NA-mRNA [ 45 i 2 4 9y o |5 0, Lid " B
TR I A K Z S cireRNA I fE.
AT S T 168 4> cireRNAs, 435145 6 4~ Fil 35
A circRNAs £ G-M UK — B30 il M-S Ol —
W) M B2z Rk, WX circRNA-miRNA-
mRNA M 2% d1 i) mRNAs I G853 #1, X 28 circR-
NAs # ] 9 mRANSs 55 3802 0 R | P30 A6 Ry 55 45
WS FEA O, BEBH circRNA-miRNA-mRNA B 4%
Wit B AR A Y SRR, KT
IEM R Sk A BHE . Meng SV NP E T
11 490 4~ circRNAs, 75 XF 7 5t A 1) miRNA 45 4 7
ST S E R, BAERAE 1 045 4 miRNA-circRNA
GEOLNLE L LL B 75 A cireRNAs 56 4t 36 5k B 4%
FE X %58 B LR IF T A ceRNAs (R 47 2 A5 43
Mg . &8 T 1 46 25 4 circRNAs ) ceRNAs
R M o BRI AR WT R L WAET T cir-
cRNAs Pk ceRNAs IIEXZS 5 T M 3£ & 4%
SR, Y4, Huang %M I09F T circRNAs i #7K
R ) 2 . AT AE KRR I 5 AN & & B A
S TP 6 612 4 circRNAs, £ 5] 113 4
253K cireRNAs, fEXX 113 4> 22 7 % 3K cir-
cRNAs FEA S 47 3L D Re T B Ja & B, L

Gy FEAR L DR v A R K T S AR 2 20
MEYERESH A EZMER GO terms, #id
WGCNA J5iEmtse 1 25 5 K35 circRNAs fl1 22 7%
ik mRNA B335 2%, I JF — 2B #EWT T circR-
NAs W& £ 42 D ae. AT B 55 & B cir-
¢cRNA ;34220472 | 34220 . 857mRNA (/) F i 5
TALE # ] T BGIOSGA13510 (0s03g0732100)
I FIEAKCE 2B IEA E R R, X R PX circRNA
A REE Y S AR o e b R AR
. BRELZ AN, 22 53 F£3E 1 cireRNAs [ 55 A 5 A
AR 1 5T B PR S 8 A L S A A T R DL 3 A R
FAS IS o AR A R R AR, X
FKH cireRNAs TEZ NS5 T KFEW =&

5 B H#H

MY ELREYAEREEN A EELE, M
Yywk oA 2207 TR R AN DR X R 4 e o
(AL ] R B 5, AS S RE BE IR A ML T il AT ) R 1Y
FEALH LT RFE AT B A EEE N, M
Yt ol B & T 24 5 ey sh AR, R0
1515 PR 4 XA ) A K R B o AR R TR 3R SR KT Y B
A ELENEER . TR, 48 1B . DNA
H Ak L ATP #4045t 81 98 L &% ncRNAs 41 &
() B AL AB i X i R B E R Z 28 T2
KR, ARFFRLGER T RUBAL ALY A Bl
PR R AR, R A I L DNA 3 Ak
ATP #KHS i 4e £0, 5 3 Al ncRNAs S 50 =%
PR B 5T R AR AL .

MO Z IS R BT 2 B DNA B AR
b AL 2R (B RS B PR SAGs R K/KF. BT
435 AR 2 Al AR A i e T A AR
WRE RN A E Nz ZIRBERAES S5HEY
MR R Y H R S R — D R . A
P& 5 DNA A0 i 98 45 B 7 40 B/E . B AT
Xt 2R B 1R DNA 3Lk iy o 2 2 75 B3 4E
TIEAEY M 7 2 B AT AE . G (0 5T 8 958 0o
A AR A 7 S HE, ATP 45 Y e (o 5 & 99 &
B W ok At W 35 4% 7 U A 2 AR Y R
VR AL FEOFST . BLAR . BR TR IR
PR A5 A0 D R AR P 9 DR M R R e e
%, DNA H AL R4 8 P B0 AS [\ 5 207 1 it
J I 2 R R AL R 5 A TR 2 A R A Y (B A G
(R T L, R o S B I P SR W T I G i R AR A
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Vi 2 U (6 A 5 252 A, DRt 22 S AR i B B
XA A E B, H A4l & (86 DNA B
FAL AR 0 B W s 4 2 R A A B R
I% , R 9 DNA ﬁﬁt%%ﬂéﬂﬁﬁ@ﬁﬁiﬁ%
R s AL A PR SE (A 7S i — DR ST .
77%,%‘aﬁ?ﬁ?éﬁ%&ﬂiﬂ@ﬁ%,MWiﬂITE%
AIRES S THYMW R Z M IHE R ncRNAs FiJs,
B A miRNAs J& H i #F 58 15 H 8 2 LA R A
P —2 50 5 % & A XK ncRNAs, i miRNA164
Xof I R 6 S B TR AR HLERATE 5 E A S TR A HoAth neR-
NAs H A 40 ] o 42 it Fr 52 2 0 22 5 HoAh
ncRNAs, il IncRNAs Hil circRNAs, 5 F = EZ1
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