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Study on the threshold of late frost damage of ‘Cabernet Sauvignon’

grape at different developmental stages in Ningxia
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Abstract [ Objective] Frost temperature thresholds of grape are the basis for frost monitoring, prediction,
assessment, and prevention. The study investigated the low-temperature tolerance of the main wine grape

‘Cabernet Sauvignon’ at different development stages in the eastern foothills of the Helan Mountain, and
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further established a system of frost temperature thresholds for wine grapes. The study aimed to provide
the basis for frost prediction and prevention of wine grapes in the eastern foothills of the Helan Mountain.
[ Methods ] We used a field frost chamber to treat the pompom, bud, new leaves, and new shoots of the
main wine grape variety ‘Cabernet Sauvignon’ at different developmental stages under low temperature in
the eastern foothills of the Helan Mountain during the period of April to May 2022. The supercooling
point, relative electrical conductivity (Ry:), and semi-lethal temperature (L ;) were measured. Field
survey on frozen ratio under low temperature treatment was carried out. A regression model based on the
correlation between frozen ratio and low temperature was set up to calculate the critical temperatures for
light, moderate, and severe {rost at different development stages of the wine grape. The above mentioned
indicators at the temperature of frost were analyzed to determine the frost temperature thresholds at differ-
ent development stages of ‘Cabernet Sauvignon’. [ Results| Low temperature had different effects on
‘Cabernet Sauvignon’ during the pompom, bud opening, leaf spreading, and new shoot growth stages.
The lower the temperature, the higher the frost exposure rate in each development stage. The supercoo-
ling point and the semi-lethal temperature (L 1;,) were gradually increased with the development of the
wine grapes. LLow temperature tolerance in the pompom stage was the strongest and followed in the bud
opening and leaf spreading stages. The tolerance of new shoot growth stage was the weakest. [ Conclusion]
—7.70 C was the turning point for severe frost at the pompom stage, while the critical temperature of
bud opening stage was —4.49 °C. Temperature lower than —2. 79 °C at the leaf spreading stage caused ir-
reversible damage to the wine grape. Furthermore, below —1. 62 °C in the new shoot growth stage caused
severe frost.
Key words ‘Cabernet Sauvignon’ grape; budding stage; frost temperature threshold; supercooling point;

semi-lethal temperature; in situ test; field frost chamber
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Fig.1 Morphological pictures of ‘Cabernet Sauvignon’ at different developmental stages
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Table 1 Low temperature simulation cooling curves of

‘Cabernet Sauvignon’ at different developmental stages
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Table 2 Frost classification and symptoms of ‘Cabernet Sauvignon’ at different developmental stages
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Table 3 Subcooling point, freezing point, and subcooling

capacity of ‘Cabernet Sauvignon’ at different

developmental stages

5% Temperature/°C

KEH W i HIbE
Developmental BURCESIN ZEVK 5 Subcooling
stage Subcooling Freezing capacity
point point
BRI
Pomodromous —6.43+0. 23c —3.95+0.35c 2.487+0.13a
stage
ZEIF N
Bud opening  —4.8740.19b  —3.2040.24b 1.67+0.19b
stage
JEE I 4
Leaf spreading —3.57£0.07a —2.114+0.06a 1.46+0.07b
stage
R A
New shoot —3.23+0.03a —2.07+0.09a 1.1740.07b

growth stage

. R E VB R R F /NG TR R AN R F WA R bR
0.05 /K LR EES,
Note: Different lowercase letters after the same column of data

in the table indicate significant differences at the level of 0. 05.
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Fig. 2 Changes of relative conductivity of ‘Cabernet Sauvignon’ at different developmental stages under low temperature stress
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Table 4 Logistic equation and semi-lethal temperature of ‘Cabernet Sauvignon’ at

different developmental stages under low temperature treatments

Logistic J# Logistic equation

KB W Developmental stage L5 /C
Ji # Equation R?

S FRIW Pomodromous stage y=53. 6835/ (148026155820 0.936 5 —7.71

ZEFFHUY Bud opening stage y =94, 4359/ (14 ™ 7381157880 0.998 5 —2.65

JE] Leafl spreading stage y=154.0241/(1 o8 49516, 57850y 0.977 3 —1.67

Al A K New shoot growth stage y=97.9778/(1+4 ¢ 021 H1-8665 0.976 0 —1.47
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Table 5 Frozen rate and frozen index of tissues and
organs of ‘Cabernet Sauvignon’ at different developmental

stages under low temperature treatments

KEM b3 i B R ZRTREL
Developmental Processing Frozen Frozen
stage temperature/C rate/ % index/ %
—4.0 16.7 6.7
Gk —5.0 41.7 21.7
Pomodromous
stage —6.0 62.5 35.0
—7.0 76.9 52.3
—1.0 11.8 5.9
3 IF AN —2.0 10.0 26.0
Bud opening
stage —3.0 56. 3 40. 0
—4.0 63.6 43.6
—1.0 17.4 5.2
JE —1.5 20.0 9.3
Leaf spreading
stage —2.0 33.3 25.0
—3.0 61.1 43.3
—1.0 14.3 5.7
A A R —1.5 72.7 29.1
New shoot
growth stage —2.0 81.0 52.4
—3.0 100. 0 68.0
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Table 6 Relationship model between freezing rate and low temperature and frost temperature

thresholds of ‘Cabernet Sauvignon’ at different developmental stages

AR Relationship model

RERUREE PEEARVRE(E TR R B E

KEH W Light frost ~ Moderate frost Heavy frost
Developmental stage ] , threshold threshold threshold
J & Equation R* /°C /°C /°C
SR Pomodromous stage y=282.7755/[ 1+ exp(6.3647+1.2628x) ] 0.997 8 —4.13 —5.37 —7.70
ZEFF Y Bud opening stage y=63.4194/[1+exp(3.2988+1.8858x)] 0.996 6 —1.34 —2.45 —4.49
JEM ] Leaf spreading stage y=174652.1195/[1+exp(10.5166-+1.0151x)] 0.974 6 —1.42 —2.32 —2.79
B 1 vy=091.9695/[1+exp(7.2321+5.6307x)] 0.961 5 —1.06 —1.32 —1.62

New shoot growth stage
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