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Abstract: Monogalactosyl diacylglycerol (MGDG) is an important component of plant photosynthetic
membranes and plays a regulatory role in the resistance of plants to adverse conditions. The genome of
MGDG gene family (GRMGDs) of Gossypium hirsutum 1.. were analyzed and identified by bioinformatics
method, and verified its expression rule under abiotic stress in this study. The results showed that: (1)
There were 17 members of this gene family in the upland cotton genome, the amino acid residues ranged
from 435 aa to 888 aa, the heoretical isoelectric point ranged from 6. 00 to 9. 67, and all genes contain 6 —
8 introns. (2) According to the phylogenetic tree, this gene family can be divided into type A and type B
MGDG synthetase. The gene structure and conserved motifs of each member of each subfamily were very
similar. (3) The 17 MGDG genes were unevenly distributed on 7 chromosomes. The secondary structures
showed that the family was mainly composed of a-helix and random coil. (4) The results of gqRT-PCR
analysis showed that the expression analysis of MGDG gene family members were the difference in the ex-
pression levels of each MGDG gene in four different tissues of Upland cotton. GRMGD2, GAMGDI12 and
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GhMGD16 genes were highly expressed in upland cotton roots. GAMGD7 , GRMGD9 and GRMGDI10 genes
were highly expressed in upland cotton leaves. Furthermore, we identified six candidate gene expression
patterns induced by low phosphorus stress, including GARMGD2 , GRMGD7 ., GhMGD9 , GRMGD10, Gh-
MGDI12 and GhMGD16. The expression of GAMGD2 gene at 72 h under low phosphorus treatment was 72

times that of suitable phosphorus treatment.

Key words: Gossypium hirsutum L. ; low phosphorus stress; MGDG protein; gene family; expression analysis
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Table 1

Real-time fluorescence quantitative primers of

MGDG gene family in Gossypium hirsutum L.

514 % Bk

Primer name

3[%%‘%(5’»3’)

. I
Primer sequence(5'—>3")

GhMGD2-F ATTACAGAGAAGGTATGGCAGAGAG
GhMGD2-R GTTCCATCCTCATCCTCGTATTCAT
GhMGD7-F TGCTTCGCTCAGTTTGGG

GhMGD7-R AAACACCGCCACCGTCAT

GhMGD9-F GCGTTTCTTCGAGCGTCAG
GhMGD9-R CCACCATCTCTCACTCCATTGTTAT
GhMGDI10-F TTGCTTCTATTCGGGTTGG
GhMGDI10-R CACCAGTATCACTCATCAAAATCAG
GhMGDI12-F TGGCAGAGTGTTTACGGG
GhMGDI12-R CGATGACCACCGCCAGTA

GhMGDI16-F CCTATCTCCTCCATTCTGCCACTTA

GhMGDI16-R CATAGTGGTGAAAAATCGTTTAGAA
GhActin-F ATCCTCCGTCTTGACCTTG

GhActin-R TGTCCGTCAGGCAACTCAT

2 ER550

2.1 PBEHAE MGDG EREREETEREF LD

38 14 hmmsearch 8 28 F1ECHE 56 1E , 76 il b A 56
PRI v A 3 5 17 4> MGDG 35 H %2 5 i 5t Gh-
MGDI1~GhMGD17 (% 2),17 4~ MGDG [N % %
I 53 4 5 1 A L R B TE 435~888 Z (], Horp Gh-
MGD15 Fr i ) 8 117 5 5, GRMGD16 it it
M P ol . AR TE 6.00~9. 67 Z[1],
A GhRMGDI12 5 GhMGDI15 %/ S /N T 7, H
s K Z 503 etk B E . M A TR R A T
48 612.78~99 187.20 Da Z[a] ,ZE LA XF 32 k. T
20 5 o7 T 45 SR 3 B, i b A R DAL g 5 2 1 6L T
S AL NI D TN o N D O i
MGDG Fe[H Jy 50 e R 2548 o3 Br 45 R B 1, 45 5%
WRBIEHEZANET T 5NET . ZREEHEN S
FIEW A WA B S A e 7~9 Z L NS Y
BH I E 6~8 Z I, Hip L GRMGD9 &4 7 4>
SNBTLHWAE GhMGDI14 fM1 GhMGDI16 &4 9 4
SNE T HAR 14 D MGDG i R ¥ & 4 8 A 4h
F,
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Table 2 Information of MGDG gene family in G. hirsutum L.

JE B 2 R FHEB RS SR B B Iy Tk 7 4 i 5 AL
Gene name Accession number Amino acid number Theoretical pI ~ Molecular weight/Da Subcellular localization
GhMGDI XM_016897799. 2 493 9. 64 54 448. 68 2% kA& Mitochondrial
GhMGD2 XM_041093039. 1 469 7.61 53 005. 08 A i Cytoplasmic
GhMGD3 XM 016827728. 2 537 9.35 58 895. 40 Zki /& Mitochondrial
GhMGD4 XM_016897800. 2 466 9.36 50 866. 01 4% & Chloroplast
GhMGD5 XM _016897801. 2 460 9.31 50 234. 22 4t {k Chloroplast
GhMGD6 XM_041112761. 1 469 7.61 52 975. 06 4 g Cytoplasmic
GhMGD7 XM _016827729. 2 531 9.31 58 263. 61 28 ki /& Mitochondrial
GhMGDS XM_041117257. 1 533 9.16 58 566. 65 44 4& Chloroplast
GhMGD9 XM 041117256. 1 560 9.15 61 844,52 2R IR Mitochondrial
GhMGDI10 XM_016889113. 2 532 9.16 58 583. 68 2% BL A& Mitochondrial
GhMGDI11 XM _016897798. 2 499 9.67 55 080. 47 2R IR Mitochondrial
GhMGDI12 XM_041108665. 1 470 6.00 52 257. 86 4 i 5 Cytoplasmic
GhMGD13 XM _016897797. 2 531 9.31 58 250. 56 4R f& Mitochondrial
GhMGD14 XM_041115144. 1 882 9.52 98 555. 41 JF i Plasma membrane
GhMGD15 XM_041085685. 1 435 6.77 48 612,78 20 M 5T Cytoplasmic
GhMGD16 XM_041115143. 1 888 9.53 99 187. 20 Jii i Plasma membrane
GhMGD17 XM _016897795. 2 537 9.35 58 882. 35 #kif& Mitochondrial

GhMGD1 ® -_ - ——— i e UTR

GhMGD2 W @ CcDS

GhHMGD3 & — -— —- ]

GhMGD4 & — -— —-——

GhMGDS5 B — - — — —

GhMGD6 Wl = ===~
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GhMGDS8 BWm—a—a-——- B

GhMGD9 @ - Y

GhMGDI10 W — — - — —- 1

GhMGDIl & — - —- 3

GhMGD12 -—-- - =

GhMGD13 ¥

GhMGD14 ¥ =

GhMGDI15 B ——— = = = -

GhMGDI16 & — -— —- =

GhMGD17 —8———8 88+ =

5 L L L L ;) 3
0 2000 4000 6000 8000 10000
B 7t £ FF Base length/bp
B 1 R MGDG 5 K 52 % 451 23 br
Fig. 1 Structure analysis of MGDG gene family in G. hirsutum L.
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Fig.4 Chromosomal localization of MGDG gene

family in G. hirsutum L.
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Fig 2 Phylogenetic analysis of MGDG gene family
in G. hirsutum L.
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{HAF X R IK i A AN AR R (B 5)

H GRMGD9 Fl GRMGDI10 1M v iy 263k
R LR,

GhMGD2 F1GhMGD12 fEAR P ik B e
i AE L AR KiK. GRMGD7 3R AR b 1 3%
IR EAR T FEE RIS B R AL, M GAMGDI6
TEARFN I v By K3k & e i, fE 2B P Y R Gk =
AR

Xof et b A 41 B E AT AR A, DL Ak U [R] B i)
F14) oty 3t A ARV 2H 4 0 A1 B EAT QR T-PCR 434 MG-
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Table 3 Secondary prediction results of MGDG family

Relative expression level

AR R

proteins in G. hirsutum L. %

wEak ol emusn JEPE O opg
S . . Extended

Gene name  Alpha helix ~ Random coil Beta turn

strand

GhMGDI1 33.54 41. 26 19.51 5.69
GhMGD2 40. 60 37.18 16. 88 5.34
GhMGD3 38.43 40. 86 15. 86 4.85
GhMGD4 32.69 35.91 21.08 10. 32
GhMGDS 33.12 41.18 19. 39 6.32
GhMGD6 41.45 36.97 16. 88 4.70
GhMGD7 35.28 40. 00 17.74 6.98
GhMGDS 38.16 40. 04 16. 35 5.45
GhMGD9 38.28 39. 00 17.35 5.37
GhMGDI10 36. 16 40. 68 18.08 5.08
GhMGDI11 33.94 35. 14 21.49 9.44
GhMGD12 40. 09 39.02 16. 84 4.05
GhMGD13 34. 15 41.13 18. 49 6.23
GhMGD14 28.83 38.71 22.81 9.65
GhMGDI15 39. 86 36. 87 18. 20 5.07
GhMGD16 32.02 35.06 22.55 10. 37
GhMGD17 35.45 42.35 17.35 4.85
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The relative expression of MGDG gene in tissues in G. hirsutum L.
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