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2个芽变苹果品种枝条主要性状比较

李文芳,任振硕,李 龙,马宗桓,毛 娟,陈佰鸿*

(甘肃农业大学
 

园艺学院,兰州
 

730070)

摘 要:短枝型芽变品种是中国苹果矮化密植栽培可以利用的重要种质资源,研究其形成的生理基础和相关基因,

为进一步探索苹果短枝型芽变形成机理奠定基础。以枝条快速生长期的普通型品种‘烟富8号’和短枝型品种‘惠
民短枝’叶片、茎与茎尖作为试验材料,测定枝条粗度和节间长度,采用 HPLC法测定内源激素(IAA、GA3和

ABA)和可溶性糖(葡萄糖、蔗糖、果糖、山梨糖醇)含量,应用实时定量
 

qRT-PCR技术比较分析激素相关基因在不

同品种中的表达特性,为研究苹果枝条发育调控机理提供支撑。结果表明,‘烟富8号’的节间长度高出‘惠民短

枝’1.2倍,而枝条粗度显著低于‘惠民短枝’;茎中的蔗糖和山梨糖醇含量分别显著高于‘惠民短枝’2.5倍和1.3
倍,茎尖中的葡萄糖含量仅为‘惠民短枝’的0.3倍;茎和茎尖中的GA3 和IAA含量、TIR1 和GA20ox 基因的表达

水平显著高于‘惠民短枝’,而ABA含量、SnRK2 和PYL 基因表达水平显著低于‘惠民短枝’;叶片中GA20ox 基

因的表达水平显著高于‘惠民短枝’。研究推测,较低浓度的GA3、IAA、蔗糖和山梨糖醇,及较高浓度的ABA和葡

萄糖与短枝型苹果品种的形成密切相关。
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Abstract:
 

Spur-type
 

bud
 

mutation
 

varieties
 

are
 

important
 

germplasm
 

resources
 

that
 

could
 

be
 

utilized
 

in
 

the
 

dwarfizing
 

and
 

close
 

planting
 

of
 

apple
 

in
 

China.
 

Studying
 

their
 

physiological
 

basis
 

and
 

related
 

genes
 

lays
 

the
 

foundation
 

for
 

further
 

exploring
 

the
 

formation
 

mechanism
 

of
 

apple
 

spur-type
 

bud
 

mutation.
 

In
 

this
 

study,
 

the
 

leaves,
 

stems
 

and
 

stem
 

tips
 

of
 

the
 

common
 

cultivar
 

‘Yanfu
 

No.
 

8’
 

and
 

the
 

spur-type
 

‘Huimin
 

Fuji’
 

during
 

the
 

rapid
 

growth
 

period
 

were
 

used
 

as
 

experimental
 

materials
 

to
 

measure
 

the
 

branch
 

thickness
 

and
 

internode
 

length.
 

The
 

contents
 

of
 

endogenous
 

hormones
 

(IAA,
 

GA3 and
 

ABA)
 

and
 

soluble
 

sugars
 

(glucose,
 

sucrose,
 

fructose,
 

and
 

sorbitol)
 

were
 

determined
 

by
 

high
 

performance
 

liquid
 

chromatography
 

(HPLC),
 

and
 

the
 

expression
 

characteristics
 

of
 

hormone-related
 

genes
 

in
 

different
 

varieties
 

were
 

compared
 

and
 

analyzed
 

by
 

real-time
 

quantitative
 

qRT-PCR,
 

providing
 

support
 

for
 

the
 

study
 

of
 

the
 

regulation
 

mecha-
nism

 

of
 

branch
 

development
 

in
 

apple.
 

The
 

results
 

showed
 

that
 

the
 

internode
 

length
 

of
 

‘Yanfu
 

No.
 

8’
 

was
 

1.2-fold
 

higher
 

than
 

that
 

of
 

‘Huimin
 

Fuji’,
 

while
 

the
 

branch
 

diameter
 

was
 

significantly
 

lower
 

than
 

that
 

of
 

‘Huimin
 

Fuji’.
 

The
 

contents
 

of
 

sucrose
 

and
 

sorbitol
 

in
 

stems
 

of
 

‘Yanfu
 

No.
 

8’
 

were
 

2.5-
 

and
 

1.3-fold
 



higher
 

than
 

those
 

in
 

‘Huimin
 

Fuji’,
 

respectively.
 

The
 

glucose
 

content
 

in
 

stem
 

tips
 

of
 

‘Yanfu
 

No.
 

8’
 

was
 

only
 

0.3-fold
 

of
 

that
 

in
 

‘Huimin
 

Fuji’.
 

The
 

contents
 

of
 

GA3 and
 

IAA,
 

and
 

the
 

expression
 

levels
 

of
 

TIR1
 

and
 

GA20ox
 

genes
 

in
 

stems
 

and
 

stem
 

tips
 

were
 

significantly
 

higher
 

than
 

those
 

in
 

‘Huimin
 

Fuji’.
 

Howev-
er,

 

the
 

content
 

of
 

ABA,
 

and
 

the
 

expression
 

levels
 

of
 

SnRK2
 

and
 

PYL
 

were
 

significantly
 

lower
 

than
 

that
 

in
 

‘Huimin
 

Fuji’.
 

The
 

expression
 

level
 

of
 

GA20ox
 

in
 

leaves
 

was
 

significantly
 

higher
 

than
 

that
 

in
 

‘Huimin
 

Fuji’.
 

The
 

study
 

shows
 

that
 

lower
 

concentrations
 

of
 

GA3,
 

IAA,
 

sucrose
 

and
 

sorbitol,
 

as
 

well
 

as
 

higher
 

concentrations
 

of
 

ABA
 

and
 

glucose,
 

were
 

closely
 

related
 

to
 

the
 

formation
 

of
 

spur-type
 

apple
 

varieties.
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  苹果短枝型品种是普通型苹果品种在内、外因

素综合作用下自发突变形成的天然矮化种源。其树

冠矮小,树姿直立,萌芽率高,成枝力弱,短枝比例

高,成花容易,坐果率高[1-3],管理简便,具有较强的

适应性、早果性、丰产性和稳定性的特点[4]。此外,
短枝型品种枝条粗而短,枝上芽间距较窄,单位长度

枝条上的叶片数量多,加之叶片大而厚,具有较高的

光饱和点和较低的光补偿点,光能利用率高、呼吸消

耗少,光合制造能力强,能够积累更多的光合产物,
有利于提升苹果品质,同时充足的养分积累保证了

树体的营养[5]。矮化密植是世界苹果栽培的发展方

向,选用短枝型品种是苹果矮化密植的主要途径

之一[6]。
研究表明,植物枝条节间变短现象与赤霉素

(GA)密切相关。GA能够参与调控植物茎的伸长、
种子萌发、叶片展开和果实发育等多个生长发育过

程[7]。GA20-氧化酶(GA20ox)是植物 GA合成途

径中的关键酶,过量表达能导致赤霉素的过量合成

和明显加快植株生长[8]。脱落酸(ABA)对植物的

生长发育的调节作包括种子休眠、萌发、营养生长、
环境胁迫反应等[9]。

ABA信号通路的关键参与者是 ABA结合受

体 (RCAR/PYR1/PYL),能 够 与 蛋 白 磷 酸 酶

(PP2C)一起形成功能性全受体,与Snf1相关激酶

SnRK2蛋白家族在ABA信号转录途径和抗渗透胁

迫中扮演着重要的角色[10]。生长素IAA参与多种

生理活动,包括细胞扩大、细胞周期调节和分化过程

等[11]。生长素极性运输抑制剂响应蛋白(TIR1)是
F-box蛋白家族的一员,为植物生长素受体,是植物

生长素信号转导途径的关键因子。
在植物中,光合作用和源库组织中的碳代谢产

生不同的糖信号,以调节生长、发育和应激反应。果

树不同器官中碳水化合物的种类和含量在很大程度

上影响并维持着果树的生长发育以及其他生理代谢

过程[12],碳水化合物在果树体内主要以糖类物质及

其代谢所产生的其他化合物的形式存在[13]。糖不

仅为细胞碳和能量代谢提供燃料,而且作为信号分

子发挥着关键作用。
可溶性糖如蔗糖、葡萄糖、果糖可以通过液泡膜

上相应的转运蛋白运输到液泡中,液泡中糖浓度的

增加会激活与糖代谢途径相关的酶和基因的表达,
调节细胞不同腔室的渗透平衡[14]。蔗糖在转化酶

的催化不可逆水解为葡萄糖和果糖,作为植物生长、
产量形成和胁迫响应的营养物质、能量来源以及信

号分子[15]。SnRKs蛋白激酶家族也在植物糖信号

和碳代谢中起关键作用[16]。
本研究通过分析内源激素和可溶性糖含量在普

通型和短枝型富士苹果品种之间的差异,结合PCR
荧光定量分析相关基因的表达差异,分析判断不同

种类、不同浓度激素和可溶性糖与短枝型芽变品种

形成的关系,为探索苹果短枝芽变品种的形成机理

提供理论基础,从而为苹果定向芽变育种提供科学

依据。

1 材料和方法

1.1 材料与处理

供试材料选用普通型品种富士‘烟富8号’,短
枝型品种‘惠民短枝’,砧木为山定子,树龄为10年,
株行距为3

 

m×4
 

m,果园位于甘肃省天水市秦州区

玉泉镇杨河村(34°34'N,105°50'E),常规管理。每

个品种选取树势健壮、长势一致的苹果树9株,每3
株为1个重复,在枝条快速生长期每株随机选取中

上部外围1年生枝8~10个,同时随机采集一年生

枝条中部的叶片、茎和茎尖,并将其速冻于液氮中2
 

h,-80
 

℃冰箱保存备用。

1.2 试验方法

1.2.1 枝条数据测定 使用游标卡尺测量‘烟富8
号’和‘惠民短枝’枝条中部的粗度;卷尺测定一年生

枝条长度,统计一年生枝的节位数,根据节位数计算

节间长度。

1.2.2 高效液相色谱(HPLC)法测定内源激素含

量 称取0.5
 

g冷冻样品用于测定IAA、ABA和
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GA3。每个样品与10
 

mL
 

80%色谱纯甲醇(用无

DNase/RNase双蒸馏水制备)混合,洗涤3次,转移

到试管中,在4
 

℃的冰箱黑暗条件下保存10
 

h,然
后,高速(13

 

000g)冷冻(4
 

℃)离心20
 

min,将上清

液转移到新的离心管中进行浓缩,在40
 

℃下通过旋

转蒸发使甲醇挥发,获得2
 

mL浓缩液。用50%色

谱纯甲醇连续洗涤蒸发瓶壁,定容至10
 

mL,用

0.22
 

μm有机相微孔滤膜过滤。用于 HPLC的设

备是LC-20AD系统(日本京都岛津),配备Zorbax
 

Eclipse
 

Plus
 

C18 柱(4.6
 

mm×250
 

mm×5.0
 

μm,

Agilent,Palo
 

Alto,CA,USA)和SPD-20A
 

UV 检

测器。
配制不同浓度梯度的IAA、ABA和GA3 的标

样,绘制标准标曲。进样量为2
 

μL;流速为1
 

mL/

min;柱温30
 

℃;流动相为A∶B=(甲醇/0.1%甲

酸)∶(水/0.1%甲酸)。

1.2.3 HPLC法测定可溶性糖含量 冷冻样品加

液氮快速研磨后,准确称取0.5
 

g至离心管中,加入

5
 

mL
 

80%的乙醇,35
 

℃超声提取20
 

min,4
 

℃
 

13
 

000g
 

离心15
 

min,吸取上清液至新的10
 

mL离

心管中。
用80%乙醇重复提取2次,每次加2

 

mL,最后

定容至10
 

mL。用真空离心浓缩仪(60
 

℃)旋转蒸

发,除去多余的乙醇,旋转蒸发结束后,用1
 

mL超

纯水1
 

mL乙腈复溶,然后过0.22
 

μm有机相微孔

滤膜,至棕色进样品瓶中待测。配制不同浓度梯度

的果糖、蔗糖、葡萄糖和山梨糖醇的标样,绘制标准

标曲。进样量为10
 

μL,流速为0.8
 

mL/min,柱温

40
 

℃,流动相为乙腈(75%)+三乙胺(0.2%)+超

纯水(24.8%)。

1.2.4 实时定量
 

qRT-PCR引物设计 根据Gen-
Bank与苹果参考基因组上查询的苹果基因TIR1
(MD11G1299000)、PYL(MD10G1257900)、SnRK2
(NM_001301724.1)和GA20ox(XM_008378277.3)
的CDS序列设计特异性引物(表1)。通过上海生

工生物有限公司进行引物设计并合成。

表1 试验所用引物序列

Table
 

1 Primer
 

sequences
 

in
 

the
 

experiment

基因
Gene

上游引物
Forward

 

sequence
 

(5'→3')
下游引物

Reverse
 

sequence
 

(5'→3')

TIR1 AGAGTGATGTGGAGGACCTAAGTGG AGGCAGGCAATGTTGAGGGAAAC

PYL CAGCAGCAGCAGCAATTAGTTGATC TGGCATAGCGATGTGACGACTTG

SnRK2 GCAAGGCTGTAGTGGTCTCTGTG GGCTGTCCATCCATCATCATAGGC

GA20ox ACTTCTGGGACTGAGCCTTGGAG CTGGCATGGTGGGTAGTAGTTAAGC

1.2.5 RNA提取和cDNA合成 使用 RealPure
普通植物RNA提取试剂盒[中科瑞泰(北京)生物

科技有限公司]提取总 RNA,RNase-free
 

DNase
 

I
[宝日医生物技术(北京)有限公司]用于纯化RNA。
使用琼脂糖凝胶(1%

 

W/V)分析评估RNA质量,

Pultton
 

P200超微量分光光度计(Pultton
 

Technol-
ogy

 

Limited)测量 RNA 纯度(D260/280),测定260
 

nm处的吸光值对RNA定量。之后,定量的RNA
使用 SuperScriptTM

 

Ⅲ第 一 链 合 成
 

SuperMix
 

In-
vitrogenTM[赛默飞世尔科技(中国)有限公司]逆转

录成cDNA。

1.2.6 实时定量
 

qRT-PCR分析 以苹果GAD-
PH 为内参基因,用LightCycler96实时荧光定量

PCR仪进行荧光定量,对激素相关基因进行特异性

表达分析。反应体系参照苏丽艳[17]的方法进行,具
体为2

 

μL
 

cDNA,上下引物各1
 

μL,SYBR
 

Green
 

Pro
 

Taq
 

HS
 

10
 

μL,6
 

μL
 

ddH2O补足20
 

μL。反应

程序为:95
 

℃
 

30
 

s,95
 

℃
 

10
 

s,58
 

℃
 

30
 

s,72
 

℃
 

20
 

s共40个循环,3次重复,采用2
-ΔΔCT 法对基因相

对表达量进行计算[18]。

1.3 数据处理

使用 Excel
 

2007 进 行 数 据 统 计 分 析,IBM
 

SPSS
 

statistics
 

22软件对均值之间的所有差异采用

双向 ANONA 和 Fisher􀆳s
 

least
 

significant
 

differ-
ence(LSD)进行显著性分析。

2 结果与分析

2.1 ‘烟富8号’与‘惠民短枝’枝条表型差异

从表型来看,‘烟富8号’的节间长度大于‘惠民

短枝’突变体,而茎粗小于‘惠民短枝’(图1,A)。统

计分析发现,‘烟富8号’的枝条粗度为5.10
 

mm,
极显著低于‘惠民短枝’(5.51

 

mm)(图1,B),而节

间长度为3.54
 

cm,极显著高于‘惠民短枝’1.2倍

(图1,C)。
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*和**分别表示2个品种间P<
 

0.05和P<0.01
水平的差异。下同。

图1 2个苹果品种枝条的表型性状

*
 

and
 

**
 

indicate
 

differences
 

at
 

0.05
 

and
 

0.01
 

levels
 

between
 

two
 

cultivars.
 

The
 

same
 

as
 

below.

Fig.1 Phenotypic
 

traits
 

of
 

branches
 

from
 

two
 

cultivars

2.2 内源激素和可溶性糖含量分析

在茎中,GA3 含量最高,ABA次之,IAA含量

最低。其中,‘烟富8号’的GA3 和IAA含量分别

为54.72
 

μg/g和4.79
 

μg/g,是‘惠民短枝’的2.7
倍和9.8倍,2个品种间达到极显著水平,而 ABA
含量仅为‘惠民短枝’的0.6倍(图2,A)。茎尖中,

IAA含量最高,GA3 次之,ABA含量最低。‘烟富8
号’的 GA3 和IAA 含 量 分 别 为30.52

 

μg/g和

48.66
 

μg/g,为‘惠民短枝’的1.5倍和1.4倍,而

ABA含量为‘惠民短枝’的0.7(图2,B)。
在茎中,山梨糖醇含量最高,果糖次之,蔗糖和

葡萄糖含量较低(图3,A)。其中,果糖和葡萄糖在

‘烟富8号’和‘惠民短枝’之间无显著差异,而‘烟富

8号’的蔗糖和山梨糖醇含量分别为‘惠民短枝’的

2.5倍和1.3倍,在2个品种间达到极显著水平。
茎尖中,山梨糖醇和果糖含量较高,蔗糖和葡萄糖含

量较低(图3,B)。其中,果糖、蔗糖和山梨糖醇在

‘烟富8号’和‘惠民短枝’之间无显著差异,而‘烟富

8号’的葡萄糖含量仅为0.82
 

mg/g,是‘惠民短枝’
的0.3倍。

图2 2个品种茎(A)和茎尖(B)中不同激素含量比较

Fig.2 Contents
 

of
 

GA3,
 

IAA
 

and
 

ABA
 

in
 

stems
 

(A)
 

and
 

stem
 

tips
 

(B)
 

of
 

two
 

cultivars

图3 2个品种茎(A)和茎尖(B)中可溶性糖含量

Fig.3 Sugar
 

content
 

in
 

stems
 

(A)
 

and
 

stem
 

tips
 

(B)
 

of
 

two
 

cultivars
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2.3 激素相关基因的表达分析GA3

图4显示:茎尖中,‘烟富8号’TIR1 和GA20ox
基因的表达水平均显著高于‘惠民短枝’,分别达54.5
倍和1.2倍,而SnRK2 和PYL 分别为‘惠民短枝’
的0.3倍和0.5倍。茎中,‘烟富8号’TIR1 和

GA20ox基因的表达水平分别为‘惠民短枝’的3.1倍

和1.6倍,而SnRK2和PYL 仅为‘惠民短枝’的0.1
倍和0.2倍。叶片中,‘烟富8号’GA20ox 基因的表

达水平为‘惠民短枝’的7.0倍,达显著水平,而

TIR1、SnRK2和PYL 在2个品种间无显著差异。

图4 2个品种茎尖(A)、茎(B)和叶片(C)中相关基因的表达

Fig.4 Expression
 

of
 

related
 

genes
 

in
 

stem
 

tips
 

(A),
 

stems
 

(B)
 

and
 

leaves
 

(C)
 

of
 

two
 

cultivars

3 讨 论

‘惠民短枝’是一种短枝型自然芽变突变体,具
有树势强,树冠小,萌芽率高,成枝力弱,以短果枝结

果为主,结果早,易丰产,果实较大,色泽鲜艳,风味

好等特点,通过缩短茎部营养生长的时间和缩短节

间长度,使树体矮小、适应性强[2]。

GA作为植物六大激素之一,在植物的生长发

育和环 境 适 应 等 多 个 途 径 中 起 着 重 要 作 用[19]。

GA3 是植物的生长调节剂,可以加快茎与幼枝的生

长,具有促进植株生长发育的作用。适当浓度GA
能够促进植物的伸长生长,植物体内若缺乏GA,则
导致植物矮化。GA含量差异和GA合成关键酶基

因差异表达与短枝型苹果枝条节间长度相关联,低

GA含量和GA合成关键酶基因的下调表达抑制了

‘龙富短枝’苹果枝条的伸长[20]。IAA具有调节植

物生长的作用,在适宜的浓度下可以促进植物生长,
当浓度过高或过低时会抑制植物生长。脱落酸

(ABA)能够促进种子发芽与幼苗生长,促进光合效

率与幼胚发育,
 

短枝型苹果植株的ABA含量是普

通型苹果的2.6倍以上[21]。同时GA3、IAA、ABA
之间还具有协调作用,不同浓度的激素协同对植物

的影响不同,具体的影响还需要进行数据分析才能

证明。本研究中,茎和茎尖中的GA3、IAA含量显

著高于‘惠民短枝’,而ABA含量显著低于‘惠民短

枝’。这一结果与‘长富2号’嫩枝中的GA和ABA
含量显著高于短枝型品种‘神富6号’,而IAA含量

无明显差异[22]的研究结果有出入。说明这3种植

物激素在短枝型性状的形成中均扮演着非常重要的

角色,但是三者之间的协同机制还有待进一步研究。
拟南芥中GA20ox1、GA20ox2 和GA20ox3 的

沉默会导致植株矮化,影响生长发育[23]。棉花Gh-
GA20ox6 基因过表达拟南芥能显著增加株高,且抽

薹提前[24]。MdGA20ox1 的表达量在半矮化类型

砧木SH28嫁接‘嘎啦’的茎尖、幼叶、成熟叶和枝皮

中均高于矮化类型SH40嫁接‘嘎啦’[25]。TIR1家

族基因作为生长素受体,处于生长素信号通路中关

键位置,参与调控植物生长与发育过程中生长素反

应[26]。AtPYL4,AtPYL5,AtPYL8 和AtPYL9 转

基因拟南芥对ABA的敏感性提高主要表现在种子

萌发、幼苗的生长、气孔开闭及提高植物的抗旱能力

等方面[27]。研究者还发现过表达OsPYL5 的转基

因水稻抗胁迫能力增强,但株高和总产量略有下

降[28]。SnRK2 是生长促进与胁迫应激信号通路交

汇的关键调控因子。在拟南芥中,SnRK2蛋白激酶

可以通过调节蔗糖6-磷酸合酶的活性来调节蔗糖

代谢,以及植物生长和种子形成过程中的光合作用

和碳固定[29]。同样,在本研究中,茎和茎尖中的

TIR1 和GA20ox 基因的表达水平显著高于‘惠民

短枝’,而SnRK2 和PYL 显著低于‘惠民短枝’,叶
片中的GA20ox 基因的表达水平显著高于‘惠民短

枝’。说明较低表达水平的TIR1 和GA20ox,以及

较高表达水平的SnRK2 和PYL 是短枝性状形成

的关键因子。
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可溶性糖各个组分的含量对苹果短枝芽变都有

重要作用。植物体内蔗糖转化酶可以吸收和利用蔗

糖,且在高等植物蔗糖代谢中起着关键的作用[30]。
研究表明,转化酶参与植物的生长、器官建成、糖分

运输、韧皮部卸载及调节库组织糖分构成及水平,近
年来关于该酶的生化特性、基因表达与调控以及结

构与功能等的研究取得了重要进展[31]。因而蔗糖

对于苹果枝条的发育和芽变具有重要作用。山梨糖

醇在蔷薇科植物中,主要是作为光合产物,运输物质

和储藏物质,在许多植物中作用与蔗糖相同,也经常

被用于植物组培中来与蔗糖混用[32]。前人研究发

现,山梨糖醇有利于芽的增值而不利于芽的生长,利
于茎干物质的增加而不利于叶片的扩大[33]。研究

发现,高氮条件下苹果茎尖积累的山梨醇和蔗糖为

苹果茎尖的快速生长发育提供了充足的物质和能

量[34]。葡萄糖则主要用于转变为纤维素,扩大树干

和枝叶、根部的生长,会在花芽分化后期大量生

成[35]。与本研究结果一致,茎中的蔗糖和山梨糖醇

含量分别显著高于‘惠民短枝’,茎尖中的葡萄糖显

著低于‘惠民短枝’。因此,可推断较高含量的蔗糖

和山梨糖醇对于枝条快速生长期的伸长生长提供了

能量。此外,研究发现,小麦TaSnRK2s参与了小

麦的糖代谢和胁迫信号传递,过表达TaSnRK2s可

以改善根的生长和发育[30]。本研究中,SnRK2 在

‘惠民短枝’茎和茎尖中的表达水平显著高于‘烟富

8号’,与ABA、蔗糖和山梨糖醇的变化一致。综合

以上结果推测,SnRK2 在糖代谢和激素信号中可能

具有关键的介导作用,但它们之间的联合参与调控

机理目前还不清楚,有待进一步研究。
综上所述,蔗糖、山梨糖醇和葡萄糖对苹果短枝

形成具有主要影响,果糖则影响较小或无影响。但

内源激素之间的协同作用及其与可溶性糖之间的相

互调控对短枝型芽变品种产生的作用机制还有待

研究。
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