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QTL mapping and candidate gene identification of
seed glucosinolate content in Brassica napus

ZHAO Weiguo', TA Na', WANG Hao®

(1 School of Modern Agriculture and Biotechnology, Ankang University, Ankang, Shaanxi 725000, China; 2 The Rapeseed
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Abstract [ Objective ] The study aims to discover the genetic loci and candidate genes of seed glucosinolate
content in Brassica napus, and lay a foundation for the cloning of genes involved in glucosinolate metabo-
lism and improving the breeding of B. napus. [Methods] Using KN DH populations from four different
environments as materials, the QTL mapping of seed glucosinolate content and the candidate genes were
analyzed. [Results] (1) The variation coefficient of seed glucosinolate content in B. napus was high and
stable, which followed the genetic characteristics of quantitative traits. (2) Seven consistent QTLs, inclu-
ding cqGC.A9-5, cqGC. A9-7, cqGC. A9-9, cqGC. C2-9, cqGC. C2-10, cqGC. C9-5 and cqGC. C9-6,
were environmentally stable QTLs, of which cqGC. A9-5, cqGC. C2-10, and cqGC. C9-5 were major QTLs.
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(3) Three candidate genes, including BnaA09g05480D , BnaC09g05620D , and BnaC09g05810D , were identi-
fied in the interval of the major QTL ¢qGC. A9-5 and cqGC. C9-5. Based on their annotation, these candi-

date genes were involved in the biosynthetic pathway of glucosinolates (the biosynthesis of IAOx and 3-al-

kyl malic acid) and transport and distribution of glucosinolates. [ Conclusion ] Seed glucosinolate content in

B. napus was quantitative trait. Three major QTLs for seed glucosinolate content were identified, which

might be involved in the synthesis of intermediate products and the transport and distribution of glucosino-

lates.
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Table 1 Phenotypic analysis of seed glucosinolate content of parents and KN DH populations in different years
A AR C-8 HEA N53-2 LA R A 22 A 5 A
v ) Male KenC-8/ Female N53-2/ DH population/ Phenotypic range/ Range/ Variation
ear (pmol/g) (pmol/g) (pmol/g) (pmol/g) (pmol/g) coefficient/ %
2015 79.6042. 40 15.98+2.10 59. 66424, 59 5.17~135.49 130. 32 41. 21
2016 90.0142.49 15.25+0. 77 71.25+28.06 6.52~138.62 132.10 39. 38
2017 88.1540. 99 19.40+1. 28 59.68+29. 43 7.04~137.92 130. 88 49. 31
2018 88.85+1.51 16.23+1.70 63.71+26.58 4.67~125.57 119.17 41.72
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Fig. 1 Frequency distribution of seed glucosinolate content in KN DH populations of B. napus during 2015—2018
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Fig. 2 The distribution of identified QTLs and
consistent QTLs for seed glucosinolate content in the
KN DH populations of B. napus during 2015—2018
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Table 2 Consistent QTL and indentified QTL for seed glucosinolate content in the KN DH populations of B. napus

QTL interval/cM "hromosome Identified QTL LOD value Additive effect variation/ % Year
cqGC. A3 62.20—66. 30 A03 qGC. 16YL3 2.62 —4.66 2.49 2016
cqGC. A9-1 2.50—5. 20 A09 qGC. 15YL9-1 7.71 —9.27 7.75 2015
cqGC.A9-2 18.00—25. 90 A09 qGC. 18YL9-1 6.43 —8.15 8.27 2018
cqGC.A9-3 27.60—29.90 A09 qGC. 18YL9-2 7.26 —8.29 9.47 2018
cqGC. A9-4 29.80—31.90 A09 qGC. 15YL9-2 6.91 —8.41 6. 44 2015
cqGC. A9-5 32.88—37.56 A09 qGC. 18YL9-3 8.70 —8.24 9.32 2018
A09 qGC. 16YL9-1 12.45 —10. 54 13.45 2016

cqGC. A9-6 37.50—41.70 A09 qGC. 15YL9-3 10. 81 —8.69 8.79 2015
cqGC. A9-7 44.94-—46. 06 A09 qGC. 15YL9-4 7.57 —7.26 5.92 2015
A09 qGC. 18YL9-4 5.98 —7.47 7.71 2018

A09 qGC. 16YL9-2 8.49 —8.84 9.28 2016

cqGC. A9-8 136.10—138. 00 A09 qGC. 16YL9-3 3.73 —5.58 3.74 2016
cqGC. A9-9 146.65—147. 81 A09 qGC. 16YL9-4 4.74 —6.20 4. 67 2016
A09 qGC. 15YL9-5 3.38 —3.88 2.35 2015

cqGC. A9-10 157.10—164. 00 A09 qGC. 15YL9-6 3.51 —3.97 2.56 2015
cqGC. A10-1 3.60—5. 80 A10 qGC. 15YL10-1 3.05 4.07 2.04 2015
cqGC. Al10-2 18.20—20. 30 A10 qGC. 15YL10-2 3.21 4. 69 2.12 2015
cqGC. C1-1 13.10—14. 40 Co1 qGC. 17YL11-1 5. 30 11. 44 8. 17 2017
cqGC. C1-2 20.90—21. 00 Co1 qGC. 17YL11-2 5.53 15.19 10. 39 2017
cqGC. C1-3 30.90—32. 20 Co1 qGC. 17YL11-3 5.94 —14.94 8. 11 2017
cqGC. C1-4 33.80—4. 20 Co1 qGC. 17YL11-4 3.30 —9.99 4. 85 2017
cqGC. C2-1 32.50—40. 80 Co2 qGC. 15YL12-1 3.04 3.63 2.01 2015
cqGC. C2-2 44, 00—52. 00 C02 qGC. 15YL12-2 4.56 4.72 3.12 2015
cqGC. C2-3 66.10—71. 00 Co2 qGC. 15YL12-3 5.94 5.37 3.97 2015
cqGC. C2-4 78.10—81. 80 Co2 qGC. 15YL12-4 6.02 5.73 4.28 2015
cqGC. C2-5 87.60—89. 00 Co2 qGC. 15YL12-5 2.74 3.79 1.82 2015
cqGC. C2-6 119.70—121. 70 Co2 qGC. 15YL12-6 6.74 —5.98 5.47 2015
cqGC. C2-7 126.60—129. 90 Co2 qGC. 18YL12-1 8. 64 —8.36 9.27 2018
cqGC. C2-8 131.20—134. 40 Co2 qGC. 15YL12-7 12.58 —7.72 9.51 2015
cqGC. C2-9 134.83—137. 38 Co2 qGC. 18YL12-2 8.89 —8.36 9.52 2018
Co2 qGC. 16YL12-1 7.49 —7.94 7.61 2016

cqGC. C2-10 140, 77—146. 46 Co2 qGC. 16YL12-2 8.42 —8.87 9.51 2016
Co2 qGC. 18YL12-3 9.10 —8.92 10. 80 2018

cqGC. C5 130.90—138. 60 Co5 qGC. 16YL15 2.98 —5.03 2.92 2016
cqGC. C7-1 38.60—41. 60 Cco7 qGC. 15YL17-1 5.21 —4.98 3.79 2015
cqGC. C7-3 43.90—48. 50 Co7 qGC. 18YL17-1 4. 34 —6.05 4. 66 2018
cqGC. C7-2 48.50—50. 30 Co7 qGC. 15YL17-2 7.33 —5.76 5.24 2015
cqGC. C7-4 50. 30—59. 40 Co7 qGC. 18YL17-2 4.89 —6.25 5.08 2018
cqGC. C9-1 0.00—6. 20 C09 qGC. 16YL19-1 2.85 7.28 3.47 2016
cqGC. C9-2 16.00—17. 10 C09 qGC. 16YL19-2 11.93 —11.21 14.18 2016
cqGC. C9-3 18.50—20. 10 C09 qGC. 15YL19-1 9.21 —7.59 7.33 2015
cqGC. C9-4 20.40—21.70 C09 qGC. 16YL19-3 15. 06 —12.52 17. 31 2016
cqGC. C9-5 23.52—24.58 C09 qGC. 18YL19-1 9.33 —9.01 10. 28 2018
C09 qGC. 16YL19-4 17.49 —13.46 19. 89 2016

C09 qGC. 15YL19-2 14. 48 —9.84 11.08 2015

cqGC. C9-6 33.02—37.16 C09 qGC. 18YL19-2 8.11 —8.70 9.67 2018
C09 qGC. 15YL19-3 4.39 —6.14 4.23 2015
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Table 3

Information on consensus QTL and identifled QTL for seed glucosinolate content

of the KN DH populations in Dali of Shaanxi Province

— 3 QTL A5 X ] B % 5E QTL A X ] AR 5 £y
Consensus QTL Confidence interval/cM Identified QTL Confidence interval/cM  Phenotypic variation/ % Year
cqGC. A7-1-DL 0.00—3. 40 qSGC-09DL7-1 0.00-—3. 40 1.96 2009
cqGC. A7-2-DL 16.34—17.87 qSGC-09DL7-2 14.90—17. 30 2.07 2009

qSGC-10DL7-1 15.30—17. 30 2.50 2010
cqGC. A7-3-DL 20.40—22. 30 qSGC-10DL7-2 20.40—22. 30 2.35 2010
cqGC. A7-4-DL 33.30—37.90 qSGC-10DL7-3 33.30—37.90 2.66 2010
cqGC. A7-5-DL 46.10—50. 00 qSGC-10DL7-4 46. 10—50. 00 1.78 2010
cqGC. A9-1-DL 2.00—5. 20 qSGC-12DL9-1 2.00—5. 20 6.05 2012
cqGC. A9-2-DL 5.02—7.73 qSGC-09DL9-1 3.90—8.10 7.99 2009
qSGC-10DL9-1 3.60—9. 30 7.95 2010
qSGC-11DL9-1 5.20—9.70 36. 15 2011
cqGC. A9-3-DL 13.40—14. 40 qSGC-11DL9-2 13.40—14. 40 22.48 2011
cqGC. A9-4-DL 27.74—29.52 qSGC-10DL9-2 26.40—29. 90 4. 54 2010
qSGC-12DL9-2 26.40—32.00 7.34 2012
qSGC-13DL9-1 26.40-—30. 10 17.37 2013
qSGC-14DL9-1 26.40—29. 90 15.22 2014
qSGC-09DL9-2 27.30—31.90 2.25 2009
cqGC. A9-5-DL 37.96-—39. 26 qSGC-14DL9-2 35.50—39. 30 16.17 2014
qSGC-09DL9-3 32.70—39. 40 2.70 2009
qSGC-10DL9-3 37.00—39. 40 6.11 2010
qSGC-12DL9-3 34.60—41. 40 9.12 2012
qSGC-13DL9-2 37.70—39. 50 18. 26 2013
cqGC. A9-6-DL 45.19—45. 82 qSGC-12DL9-4 45.00—46. 20 5.99 2012
qSGC-13DL9-3 44, 20—46. 10 13.13 2013
qSGC-14DL9-3 45.20-—46. 00 11. 71 2014
cqGC. A9-7-DL 146.50—147. 50 qSGC-09DL9-4 146. 50—147. 50 2.40 2009
cqGC. A9-8-DL 158.10—160. 90 qSGC-09DL9-5 158.10—160. 90 1. 85 2009
cqGC. A10-1-DL 3.67—4.90 qSGC-09DL10-1 2.80—4.90 1. 85 2009
qSGC-13DL10-1 3.30—4.90 2. 80 2013
cqGC. A10-2-DL 6.50—7.90 qSGC-13DL10-2 6.50—7.90 2.22 2013
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%42 3 Continued table 3

—H QTL AR X Ji] A %E QTL A D[] E A
Consensus QTL Confidence interval/cM Identified QTL Confidence interval/cM Phenotypic variation/ % Year
cqGC. A10-3-DL 9.10—10. 80 ¢SGC-09DL10-2 9.10—10. 80 2.43 2009
cqGC. A10-4-DL 17.30—18. 10 qSGC-11DL10-1 17.30—18. 10 3.10 2011
cqGC. A10-5-DL 29.70—30. 80 qSGC-11DL10-2 29.70—30. 80 2.71 2011
cqGC. A10-6-DL 39.50-—42.50 qSGC-11DL10-3 39.50—42.50 2.34 2011
cqGC. C2-1-DL 32.50—40. 80 qSGC-12DL12-1 32.50—40. 80 2.14 2012
cqGC. C2-2-DL 40. 80—52. 00 qSGC-12DL12-2 40. 80—52. 00 2.84 2012
cqGC. C2-3-DL 66.10—72.00 ¢SGC-12DL12-3 66.10—72.00 3.27 2012
cqGC. C2-4-DL 77.41—81. 80 qSGC-12DL12-4 76.40—83. 00 2.11 2012

¢SGC-13DL12-1 76.40—82. 30 2.28 2013
cqGC. C2-5-DL 123.40—124. 10 ¢SGC-14DL12-1 123.40—124. 10 10.12 2014
cqGC. C2-6-DL 126.50—129. 90 ¢SGC-14DL12-2 126.50—129. 90 11. 36 2014
cqGC. C2-7-DL 129.10-—133. 80 qSGC-12DL12-5 129.10-—133. 80 9.83 2012
cqGC. C2-8-DL 132.65—134. 23 qSGC-10DL12 130.90-—133. 40 15.73 2010
qSGC-11DL12-1 133.40-—135.70 14. 55 2011
qSGC-14DL12-3 132.80—137. 20 10. 86 2014
cqGC. C2-9-DL 134.42—135.99 ¢SGC-09DL12-1 134.10—136. 90 16. 59 2009
¢SGC-12DL12-6 134.10—136. 00 9.28 2012
cqGC. C2-10-DL 143. 24—147. 17 qSGC-09DL12-2 142. 30—148. 90 17.68 2009
¢SGC-11DL12-2 141.20—148. 90 14. 00 2011
qSGC-13DL12-2 142.50—148. 80 13.79 2013
cqGC. C3-DL 66.90—69. 90 qSGC-13DL13 66.90—69. 90 2.34 2013
cqGC.C7-1-DL 38.35-—39.39 qSGC-12DL17-1 38.50—41. 60 4.43 2012
qSGC-09DL17-1 38.60—39.70 3.74 2009
cqGC. C7-2-DL 42.51—44. 02 ¢SGC-11DL17-1 41.60-—43. 60 4.56 2011
qSGC-13DL17-1 41.60—43. 90 2.87 2013
cqGC. C7-3-DL 43.80—46. 40 qSGC-14DL17 43.80—46. 40 2.69 2014
cqGC. C7-4-DL 48.05—49. 21 ¢SGC-11DL17-2 46.20—48. 50 6.62 2011
qSGC-10DL17-1 47.40-—50. 60 9.57 2010
¢SGC-12DL17-2 48.50—50. 60 6.08 2012
¢SGC-13DL17-2 48.50—50. 60 3.26 2013
cqGC. C7-5-DL 50. 60—54. 10 qSGC-09DL17-2 50. 60—54. 10 4. 85 2009
cqGC. C7-6-DL 57.57-—59. 20 qSGC-13DL17-3 56.40-—58. 50 2.91 2013
¢SGC-10DL17-2 56.70—59. 30 6.59 2010

cqGC. C8-DL 66.70-—70. 70 qSGC-11DL18 66.70-—70. 70 3.09 2011
cqGC. C9-1-DL 16.00—17. 30 qSGC-10DL19-1 16.00—17. 30 7.47 2010
cqGC. C9-2-DL 22.37—22. 84 qSGC-12DL19-1 22.30—23.50 10. 61 2012

¢SGC-14DL19-1 22.20—22.70 18. 11 2014
cqGC. C9-3-DL 23.40—25. 40 qSGC-13DL19-1 23.40—25. 40 22.95 2013
cqGC. C9-4-DL 25.29—25. 67 qSGC-11DL19 22.70—27. 40 2.38 2011
¢SGC-14DL19-2 23.70—25. 40 18. 30 2014
qSGC-09DL19-1 24.80—26. 60 10. 19 2009
¢SGC-10DL19-2 25.10—25.50 9.33 2010
cqGC. C9-5-DL 25.50—26. 50 qSGC-12DL19-2 25.50—26. 50 10. 71 2012
cqGC. C9-6-DL 28.10—29. 30 ¢SGC-13DL19-2 28.10—29. 30 18. 35 2013
cqGC. C9-7-DL 29.18—31.23 qSGC-10DL19-3 29.80-—32. 60 6.57 2010
¢SGC-12DL19-3 29.70—32.70 8.25 2012
cqGC. C9-8-DL 31.10—33. 31 ¢SGC-13DL19-3 30.70—33. 00 21. 80 2013
qSGC-14DL19-3 30.20—38. 40 15. 04 2014
cqGC. C9-9-DL 34.29—38.79 ¢SGC-09DL19-2 34.30—38. 80 4.77 2009

¢SGC-10DL19-4 34.30—39. 30 3. 04 2010
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e fa, & | (A07. A09, Al0, C02, C03, CO7, CO8 #
CO9) , T ) FH 5 4550 Y A €035 o4 A 32 4 B 1 KN
DH BERFF AT & 5w 1) 47 M & i QTL
WA T 8 ZR Y ik [, 2 Bl B 7 & 1 7 kAR
16 A09, A10, C02, CO7 Fl CO9 Y (o fk | % 5F
QTL, H QTL ¥t & 487F A09 Yetafk Fix 2, Hik 2
CO2 Yo fi, BAR B0 UE T H 4 20 3 S A 1 % o Mok
QTL & i 45 R iy v Sk . I 21 50 B3 S 15 A
M T8 R T PR P B B 1 i O AR AOT
CO3 Fll CO8 Yo i {5 7 F| /D i QTL(7 A, 1 A1 FH i
o OR8N s 32 D 2 A 8 o e A 35 D - A T Y
J7ik X AE A03.CO1 Ml CO5 %5 5|/ 5 QTL(6 1),
0 H I 0 30 S D 1w MR TS TR B FloR 34 B

Mo QTL Rk,

T X 2T A0 BB A a2 KN DH B {4
T B B — B0 QTL 58 s R A %
PIFR I KN DH A F 7 B 1 & & 4K 75 1 — 2L
P QTL #HA7 F e (% 4) , 7 1 1 R 34 B8 46 7 31 b
FHAT A 38 A — M QTL, 78 K3 Fiki o0 855 %
F)FpFHA S B 46 A — B0 QTL, Hoh 7E s v Fiil
WEEME R 23 > — 2tk QTL 578 K55 Fhie 26 58 5
S 25 A—3tE QTL & v 78 8 UM I 1 B A5 X
], 7EA7 0 R A5 6 8 (b7 B % 2 B4 QTL
cqGC. C9-5 5578 K 3 Fh Ml PR 855 2 5 A P 7 B 4F 25 it
F & QTL ¢qGC. C9-3-DL W4 T 8 & 1Y B 5 X ],
FAZ ERL QTL M MERPE R AT S . HoAth iy — bk
QTL AT R T H 34 75 9o S5 o~ L A 0 v AR A
BRI QTL Fik i S5,

®4 KNDHHBEEEBRAGEMAZEXEMNT FRESE B QIL

Table 4 Co-localized consensus QTL for seed glucosinolate content of KN DH populations of

B. napus in Yaling and Dali of Shaanxi province

Bl V45 % Yangling, Shaanxi

[ P K 7% Dali, Shaanxi

— 5 QTL Consensus QTL ‘B {5 X [A] Confidence interval/cM

— &M QTL Consensus QTL ‘B AF X8 Confidence interval/cM

cqGC. A9-1 2.50—5. 20
cqGC. A9-3 27.60—29.90
cqGC. A9-4 29.80—31.90
cqGC.A9-6 37.50—41.70
cqGC. A9-7 44, 94-—46. 06
cqGC. A9-9 145.65—147. 81
cqGC.A9-10 157.10—164. 00
cqGC. AI10-1 3.60—5. 80
cqGC. C2-1 32.50-—40. 80
cqGC. C2-2 44.00—52. 00
cqGC. C2-3 66.10—71. 00
cqGC. C2-4 78.10—81. 80
cqGC. C2-7 126.60—129. 90
cqGC. C2-8 131.20-—134. 40
cqGC. C2-9 134.83—137. 38
cqGC. C2-10 140. 77—146. 46
cqGC. C7-1 38.60—41. 60
cqGC. C7-3 43.90—48. 50
cqGC. C7-2 48.50—50. 30
cqGC. C7-4 50.30—59. 40
cqGC. C9-2 16.00—17. 10
cqGC. C9-5 23.52—24.58
cqGC. C9-6 33.02—37.16

cqGC. A9-1-DL 2.00—5. 20
cqGC. A9-4-DL 27.74—29.52
cqGC. A9-5-DL 27.30—31.90
cqGC. A9-6-DL 37.96—39. 26
cqGC. A9-7-DL 45.19—45. 82
cqGC. A9-8-DL 146.50—147. 50
cqGC. A9-9-DL 158.10-—160. 90
cqGC.Al10-1-DL 3.67—4.90
cqGC. C2-1-DL 32.50-—40. 80
cqGC. C2-2-DL 40. 80—52. 00
cqGC. C2-3-DL 66.10—72.00
cqGC. C2-4-DL 77.41-—81.80
cqGC. C2-6-DL 126.50—129. 90
cqGC. C2-7-DL 129.10-—133. 80
cqGC. C2-8-DL 132.65—134. 23
cqGC. C2-9-DL 134.42—135. 99
cqGC. C2-10-DL 143.24—147.17
cqGC. C7-1-DL 38.35—39. 39
cqGC. C7-3-DL 43.80—46. 40
cqGC. C7-4-DL 48.05—49. 21
cqGC. C7-5-DL 50.60—54. 10
cqGC. C7-6-DL 57.57—59. 20
cqGC. C9-1-DL 16.00—17. 30
cqGC. C9-3-DL 23.40-—25. 40

cqGC. C9-9-DL 34.29—38.79
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2.4 HEANHEZMFRESEERER QIL EF
X EEiEEELEE SIS

FEH RN i 1 & 2 8 QTL cqGC. A9-5,
cqGC. C2-10 Fl cqGC. C9-5 ‘EAx X A I % #] 241 4>
T . Horb 5 Y& A AR DG 1 B H
H 34N EFE 5 AUHE BnaA09g05480D . BraC09g05620D Fil
BnaC09g05810D , BnaA09g05480D v T H # %l i
KR TR & B S QTL ¢qGC. A9-5 & 15 X ]
L HA R IF AL MYB34 5 MYB51 \MYBI122 3t
[F] 2 5 98 4 g | g Je Ao 24 -6 G A2 1 b ) 7 4y sl
W3- B N5 (TAO) B AE WA 1 BnaC09g05620D Fil
BnaC09g05810D {vi FH i B3 S A T o 4 348 QTL
cqGC. C9-5 F A5 IX [a] , H 400 Fg v [F] 95 FE A 43 il &
IIL1 M1GTR2,1IL1 fEGm A5 W AW A Bt f 32 %2
TR 2-%¢ 3637 S R S5 A0 AT B 3-8 S TR
PR FEGT LR W) & ORI AR AR B S 3 s GTR2 J8
T ARz HA, 5 GTRL £ F 2 56017 R
FIAE 2546 22 18] (9 XL 43 A 5 43

*5 KNDHEEMFHRESEEIN QIL Xig

BHEEEREFRELEE
Table 5 Candidate genes within the major QTL for

seed glucosinolate content in KN DH populations

and their homologous genes in Arabidopsis

\ [ B I 0
T QTL C ?d N o A s I N Arabidopsis
Major QTL . -oniidence B. napus gene homologous

interval/cM
gene
cqGC.A9-5 32.88—37.56 BnaA09g05480D MYB34
BnaC09g05620D IIL1
cqGC. C9-5 23.52—24.58
BnaC09g05810D GTR2
N N
3w

T S R AR W A BRI B AR
BIE IR MG A . Bl e A 15 K 32 v Ak
SCAR 2T A5 RS W X 3l SR T B0 SR et RSB AR R
FATH E S A S C el 1 e R R
R B 1 A5 S oh A — R Rt
VEY o2 55— R B Pl il DR 28— R 4] 2R
PR AR b S PR F SR E R
7 B AL A 45 A0k 30, 7% H T
R3S R i =l o L2 figk v )2 AR 0 il vy 3 4
FeJ7 R BB AR B L 17 % 42 . S Mh T B
TR LA A AR . TR A R
Mg A R 22 A S B TR #h S A FE W L FER T
TSR DR R S AT A A R, S A Rl R

() 2 H AR R 3 BRI IR AR B SR SR
KRR T 35 ot ol AS AL AT A4 78 A 2 1 et B K L
AR SIS R R AN A . B R — R R
R RSB T KT R A AR S i R A 2 8
B OHE)T STl S A R e B T L i B
HIFE M TR,

FEH W B I S v, Bl T B A AR S A R A
p NS RPN R0 N R B LR TN TR s ek e
HAT RS K A F 0 A R E Y 1. 0~152. 7
pmol/g. 78 R B F] 81. 3% . HBiiF & & 57 R
it B OE A DG, 3R I R ) R
R B 8 R AT A R AR LT R A L D A
X H AL SR DH AR RR - it BT VIR 34T 43 Bk B
T B 7 2 10 75 5 08 B o 128, 43 pmol /g, A8 5 &R
Bk F) 39, 28%, Han i & it 5 & i i 2 B & A
KL HEA NS RIS R RS E R,
TR I B R b n] R R T R A 4 s
SRR, BSOS H AL SE KN DH B R R A
B C-8 fiBEA N53-2 7 & &40 #r. K3
20152018 4F i 2k 4 AR C8 B F i i1 & it
79.60~90. 01 pmol/g, ¥ 86. 65 pmol/g PFH1, £
A N53-2 [ Fh 78 & &8~ 15, 25~19. 40 pmol/g,
F3116. 72 pmol/g PEAI . BARA R C-8 s # £k
AR NG3-2 FFRLH R 4 NMEMEAERKESR
(AR C-8 FIBEAR N53-2 Fp F i & e i 5 B
fAH 22 53 %1 24 10. 41 pmol/g PEFAFT 4. 15 pmol/g
BERD BRI P A A B C-8 ol #F BE A N53-2 4 il
Tt & e, HOAR C8 A4 T8 A N53-2
TR & &, A, KN DH B KR 5] Fh A8 4 1
il 7 7 B Y {HAE 59. 66~71. 25 pmol/g BEKIZ
6], A8 S R KON 39, 38% ~49. 31%, A8 S R KUK
HARX AR x5 R SR AR 45 R — 3%, DL HiE
AU SR ACAR B C-8 FIHEAR N53-2 #2 1) KN DH ¥
R i B PP F B & B 7E 20152018 4F ik 253K
119.17~132. 10 pmol/g Pik. H 1 B =32 b +
O AR L R s R, i HL R B 2 A
5 ) 0 0 PR R A s A RS A7 3 A Ay 3
DR R0 (1 3 7, 30 32 M PR A K IR BE I I B L
Z OB EmT SR HERME SRR C8 R
ACAS, DA B 7 2 0 H i AL Ih 2R i R NG3-2 B
A e ) KN DH BE A GE B HE47 3 SR 760 17 & it
) QTL &AL,

HAT. QTL &M B AR T4 2 W H TR RS
JHTSE B F IR ) 3 A R AT R DR A A Y P
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TE I S H BV AR A 352 4% i A b L © 48R S5l SRR
T o e v 2 6 IR s o 0 & 2R B MR L &
BLZ B FE AR  , w N © SR TG PR E A
FEAR X I S B B S BT QTL & i, o %
SE B KR BB o i QTL A7 5 . G e ot i 45 L H
W TR 3 R A SR R S R R AR T AR
M) F, AR A DH B 254 76 b BERIE E 4 Fpog
B R R PR R & SG RS K E R 8 MR E
Tk QTL, HFEE A1 A02,A07,A08,A09,
C01.C02 A1 CO9 Ye i fh |-, B K 55 %5 | 4 5k
DR A B A BT 25 5 1) 45 4~ 5 H T 80 3 S R
0 A OC Y SNP A7 A5, B 7 5 i R 1Y R U AR
SR 13.50% ~23. 30% , EE 44 7E A09, C02
CO9 Yt fhk [0 F22T 26 45 ) B H 0 200 9 3% 7o 2% B
SNP i & 7 4 P 1% K 2 AF Fh 7 RO B 7 i R A %
EF 5 AT A03.A09 FI Co2 ek iy QTL
REMGAE 2 AR FE A AR I 20 . ARHIF g% b 8 =
KN DH B R 3% 28 4 A5 FioAE 78 4 30 32 AR 2 X, HoFp
FoLH AR R AT E TR, WD ME I AT A
Pl PR & A G QTL. R B R RAE 7l 1. 82%
~19.89% , fiF A09.C02 Fl CO9 Yefafk | 7 4~—
#HYE QTL(cqGC. A9-5 .cqGC. A9-7 .cqGC. A9-9 .
cqGC. C2-9 . cqGC. C2-10 ., cqGC. C9-5 F1 ¢qGC.
CO-OTERBE IR E Rk, X HHL B FHE T QTL
FE A% E )R] R I B QTL Fr £F 4 (0 1R 1 45
SR AR — 0, th R WA 5 AR TR A A i QTL
PR AEME . SR, AR S Y QTL 5 #6401 5%
R F B & QTL 7 TSR Y @k, X sl 2
T 7 B B3 R A B A AS [0 1 i R R 1 B
i QTL Rk 2z R, WA AFFARAE 1Y H 5 AL 3
P FmiE &R B8 QTL ¢gGC. A9-5 .cqGC. C2-10 43
LT A09 Al Co2 Yetafhk , [FIFE . Feng 45 7F H i 7Y
TS TN B b I 21 F - B 5 i 320 QTL [A]
FELAE T A09 Fl Co2 Ye otk BV ik — e T
TE A09 I CO2 Ye o A b iy 5247 AE Fb 1 5 1 &
BQTL i, H i A =2 Fh 55 7 % & 24 QTL
W J5 S R DRUORS 40 e A g it T RS H AR

it AT R4 3 S A 5 IR DG 3 R X o AR
W AR R F oA R B EEE L, ERT
K 9 38 B B R QTL S A s K 43 F
FEH FORE X BT B S R QTL 347 T %
SE T F 82 QTL X ] Y v 75 i 1 5 PR AR /D i
FR B2 AR B A R R R
F 5T 34 AT 30 o 4 35 P 41 S K o0 B 5 ¥R 78 A SR R R

PR e A7 2 5 H bR IR O B Y A8 S A R ik
PO R A e S DA SR 30 Y H R R N M
BRI R 20 Z 54 SNP #ric &l 3] 41 N HE
[ SNP i 5, Hofsr T SNP o7 5 X By 8 /> fi v it
WE5 T AW A iEED . AT b X H
T A TR A B R QTL ¢gGC. A9-5 Fil &
AL QTL ¢gGC. C9-5 1B A5 IX 18] 437 45 5 B 5 w2k
YA WS AR AR DG 1 H 7 AL 323 ) BraA09g05480D
H1 BnaC09g05620D . BnaC09g05810D , 1 3¢ F1 4 g I+
B LA e, AR IR b 25 2 )8 - F e R
B Y, b 400 p I 35 DR T B A A 1 S H i 2R il
SR 0L e I U R RT AR EL A AR B T R
BnaA09g05480D 1)l g It [A] ¥5 3 [ MYB34 5
MYB51 . MYBI122 It [6 2 5 i £ 05| BE-3-2 B Ji5
(TAOX) A W 5 BnaC09g05620D 17 I
FIJRFE TTLT F 260 524 2-Je 23 R R = i AL B
B 34 SRR S L BnaC09g05810D 13 R IF IR
URFE GTR2 Jy A %0 4% 5% 38 25 (1, A 58 1 7
FERFAE RS B M is 54 . B i Bk e Fh
B o o VA e R R ) 3R AR Al Ol TR — A i st
SEALHEAT L P D RE B0 TIE B2 AL 8 22 H AR,

4 g5 w8

(D H #1322 KN DH B 7E A R AR5 F 7
B A o AN, S e 2016 AR AL, O 7125
pmol/g YEKI, 7£ 2015 4 2017 4 i 4 {H 44K,
SR 59. 66 pmol/g PEKIAI 59. 68 pmol/g PFHT; Ff
TR iR R R RO R B AR (39, 38060 ~
49. 31 %0) » H 5 B S B 00 1 o R B B
NGB S

(47 MW BB M F AT & & QTL, f#
PR RUAR S B 1Y & ¢GC. 16 YL19-4 (19. 89%),
AR 2 GC. 15YL12-5 (1. 82%), 7 —% ik QTL
(cqGC. A9-5 . cqGC. A9-7 ., cqGC. A9-9 . cqGC. C2-9 .
cqGC. C2-10 ,¢cqGC. C9-5 Fll cqGC. C9-6) J FF 5 e 5
ik QTL,H A ¢qGC. A9-5 Fl cqGC. C2-10 Fl cqGC.
C9-5 Ay H W B SR A - 1 2 i 4L QTL,

(3) ) FHAN [ 8 7 A 00 7 3k AR A5 1 1 3 780 3 =2
=7 1 7 e e AU S 7 A T Co9 Y fk b
M QTL, RIABFR A F 0 QTL %78 45 R 1k
B 1 R AT S SR S [ R PR BE A S 0P T T
S QTL Rk A2 5,

() H 8 U SR T AR 1T 3 i 240 QTL ¢qGC.
A9-5 X [A] {4 45 3% 3 P BnaA09g05480D , F R JF
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