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Effects of 2,4-epibrassinolide on the growth and
physiological characteristics of Phaseolus vulgaris
seedlings under saline and alkaline stresses

MA Yuanyuan, WANG Zhi, CAO Jinping, LUO Xinrui, WANG Yuping”

(College of Horticulture, Gansu Agricultural University, Lanzhou 730000, China)

Abstract [ Objective] The study aims to explore the physiological mechanism of exogenous 2,4-epibrassin-
olide (2,4-EBR) in alleviating the damage caused by salt-alkali stress in common bean (Phaseolus vulgaris
L.) seedlings, to provide a basis for the application of 2,4-EBR to alleviate salt-alkali stress in leguminous
plants. [Methods] Using Shanxi red common bean ‘Yunxuan 2’ as the test material, the authors studied
the effects of exogenous spraying of 0. 1 mg/L 2,4-EBR and 4. 0 mg/L brassinozole (BRZ) on the growth,
photosynthetic gas parameters, antioxidant enzyme activity, and osmotic adjustment substance of common

bean seedlings under saline-alkali stress at 100 mmol/L. [ Results] Under saline-alkali stress, common
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bean leaves were curled and withered, and plant height, leaf area, main root length, synthetic pigment
content, net photosynthetic rate (P,), transpiration rate (T,), and stomatal conductance (G,) were all
decreased significantly (P<C0.05), proline (Pro), soluble sugar (SS) content, and superoxide dismutase
(SOD), peroxidase (POD), catalase (CAT), and ascorbic acid peroxidase (APX) activities, relative con-
ductivity (REC), malondialdehyde (MDA) content, and intercellular CO, concentration (C;) were signifi-
cantly increased. Exogenous spraying of 2,4-EBR alleviated the wilting and curling of leaves caused by
salt-alkali stress, and the plant growth condition was gradually improved. Meanwhile, it effectively re-
duced the REC, MDA, and C, in the leaves of the seedlings, and significantly increased plant height, leaf
area, primary root length, Pro, SS, P,, T,, and G, as well as SOD, POD, CAT, and APX activities.
These salt-alkali resistant effects of common beans induced by exogenous 2, 4-EBR were reversed by
adding BRZ. [ Conclusion ] Exogenous 2,4-EBR treatment can reduce membrane lipid peroxidation damage
caused by salt-alkali stress by increasing antioxidant system enzyme activity and osmotic adjustment sub-
stance content in common bean. It effectively removes the non-stomatal limiting factors that weaken the

photosynthesis of common bean seedlings under saline-alkali stress, promotes seedling growth, and en-

hances the salt-alkali resistance of common bean seedlings.

Key words

Phaseolus wvulgaris L. ; saline-alkali stress; 2, 4-epibrassinolide (2, 4-EBR); brassinazole
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Fig. 1 Effects of exogenous 2,4-EBR and BRZ on morphology of common bean seedlings under saline-alkali stress
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Table 1 Effects of exogenous 2,4-EBR and BRZ on the

growth of common bean seedlings under saline-stress

kb ki i i ERK
T - Plant height Leaf area Main root
reatment 2
/em /cm length/cm
CK 42.1240.76a 25.3940.57a 28.524+0.31a
XP 26.1140.75d 17.554+0.12d 18.85+0.33d

XP+EBR 36.4740.32b 23.222£0.81b 25.5040.42b
XP+BRZ 22.2240.66e 15.58£0.17e 17.2140.48d

XP+BRZ+EBR 29.9840.38c 19.42%0.36¢c 21.522£0.51c¢

WA ENE 8 7R R [ 4b 3R 1] 25 57 835 (P <<0. 05),
T,
Notes: Different lowercase letters in the same column indicate sig-

nificant differences between treatments (P<C0. 05). The same as below.
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Different lowercase letters indicate significant difference between treatments (P<C0.05). The same as below.

Fig. 2 Effects of exogenous 2,4-EBR and BRZ on relative conductivity and MDA content in leaves of

common bean seedlings under saline-alkali stress

2.3 5ME 2,4-EBR #1 BRZ M &£ HETEE
B R i SR A R

WE 3 Frs, = S 4 M R P kb POD,
SOD.CAT Il APX {&MAE4 A # T ¥ 1k CK 3%
P 78 XP AL G 43 5 Ry 31, 41%0.13. 54 % .
67.52% 1 140. 18 % (P <<0. 05) , 7 XP+EBR Ab3f
Tk E B . LA XP AR B B W E R T
76.07% .36.15%.50. 80% .16. 60% ., 5 XP &b ¥

HHH, XP+BRZ 4 #EZE F it i+ POD,SOD Al CAT
TWEVES R R AR EE T . H POD A1 CAT 36 PE 38 i 2
B APX W& PEMREAR T 16. 99% . 5 XP+
BRZ &b ¥ 4H It , XP + BRZ + EBR &b B 4 i o
POD.SOD.CAT APX i ¥ 43 51l i@ E 54 T 26. 86% .
14.91%.6.88% .28. 54 % (P<C0. 05), i HH £& Bl oy
R 25 SR AR B A AE A N R B AL Be i i
T B A I Y T PR R B 4 M e A7 AR AR 4, i A



8 ] TR I L 45+ 2, 4-F MR AR 0F SR b0 25 T 4 i

AR R AR PR M 1 R ) 1185

J5 EBR Ab BB — 205 5 8 SR EL 0 b 38 ik R
P A Tl I M T X Rh 22 A% 4F F BE B4 i R BRZ
SR
2.4 5ME 2,4-EBR #1 BRZ & EHiETEE
BEMHREEATYREENZN

MK 4 &/, ZE4H M A Pro A1 SS &&= 4 4b
PR ¥y CK A A F2 B2 38 , 72 XP 3R [ CK 43
AN 16. 45% M1 5. 93% . #F XP+ BRZ 4 #F L

[ i}, XP+EBR b ¥ 22 G 0t /() Pro A1 SS % & kb
XP Kb 51 8 2 BN T 45, 96 % Al 142, 34 % , XP
+BRZ+ EBR At 2% & 0 F 49 Pro & & [k XP+
EBR 43§ 2 850 20, 19%, SS & & W it XP +
BRZ Ab B0 & EREAK T 26. 94 % (P<C0.05) .

DL b 25 B, A5 EBR A0 3G B 4R R i
Hﬁ»Lfﬂznaaﬂﬂ#tP Pro #1 SS & &, H7E SS & &
AR TGS M T A M 2 i A ] RE w5 5R BRZ

XP AbHE— 25 4 B BN T 15, 2090 F1 107 91%, S,
_ 80T 600
T a )
g 70 i $#E 500 a
#Ho60f b HE. b
g;& sl %;& 400 | c c
=) c = d
S 40t d S 300
wE 307 2Z 200}
HE 20t B S
8 10} ®g 100}
2 0 “ 0
A CK XP XP+ XP+ XP+BRZ CK XP XP+ XP+ XP+BRZ
T EBR BRZ +EBR N EBR BRZ +EBR
_ 25t 20t a
) a H 18t T b
o 8 20) B E 8 16} < ]
41 o d ¢ 2 SR :
s 15 N5 127
R K5 10t
T 10} . Ag gt .
W &5
me g8 6f
B ST K 4r
< = 2F
) o R
0 . . . .
CK XP XP+ XP+ XP+BRZ CK XP XP+ XP+ XP+BRZ
EBR BRZ +EBR EBR BRZ +EBR
Kb 7 Treatment AbFH Treatment
& 3 AN 2,4-EBR F1 BRZ X #2838 T 25 54008 ot 7 0 A0 i T 1 1Y B2
Fig. 3 Effects of exogenous 2,4-EBR and BRZ on antioxidant enzyme activities in
leaves of common bean seedlings under saline-alkali stress
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Fig.4 Effects of exogenous 2,4-EBR and BRZ on osmotic regulatory substances content in the

leaves of common bean seedlings under saline-alkali stress
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Table 2 Effects of exogenous 2,4-EBR and BRZ on photosythetic pigment content in leaves of common
bean seedlings under saline-alkali stress
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Fig. 5 Effects of exogenous 2,4-EBR and BRZ on photosynthetic parameters in

common bean seedlings under saline-alkali stress
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