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Transcriptional regulation of suberin and its response to the environment

ZHOU Yue, AN Yongping. MA Rong, WANG Pei”

(Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources,

Southwest Minzu University, Chengdu 610041, China)

Abstract [ Objective ] Suberin is a polyester type biopolymer that specifically deposits in tissues such as the
endodermis, periderm, seed coat, and wound epidermis of plants. Acting as a barrier between the plants
and their environment, suberin controls the transport of water and solutes, protecting plants from envi-
ronmental stresses and pathogenic invasion. This article reviews the key enzymes and transcription factors
involved in suberin biosynthesis, and discusses the impact of environmental factors on suberin synthesis
and deposition. The future research direction was prospected. [ Reviews ] The regulation of suberin in-
volves various factors, including key enzymes such as f-ketoacyl-CoA synthase (KCS), fatty acyl reduc-
tase (FAR), cytochrome P450 enzymes (CYP family), and transcription factors such as MYB, NAC,
WRKY. Environmental factors also regulate the biosynthesis and deposition of suberin through complex
signal transduction pathways. [Prospect] Future research should focus on the key regulatory nodes of su-
berin biosynthesis, particularly exploring the factors that influence species-specific deposition of suberin in
crops. By leveraging multi-omics approaches to elucidate its transport, assembly, and post-transcriptional

regulation mechanisms, there is potential to provide new strategies for enhancing nutrient use efficiency
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and stress resistance in crop genetic improvement,
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, ' |
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SPPD. Poly(phenolic) domain. Enzymes involved in SPPD monomer synthesis: PAL, phenylalanine ammonia-lyase. C4H,
cinnamate-4-hydroxylase. 4CL, 4-coumarate-CoA ligase. HCT, hydroxylcinnamoyl-CoA shikimate/quinate hydroxy-
leinnamoyl transferase. C3' H, 4-coumaroyl shikimate 3'-hydroxylase. CCoAOMT, caffeoyl-CoA-O-methyltrans-
ferase. CCR, cinnamoyl-CoA reductase. CAD, cinnamoyl alcohol dehydrogenase. F5H, ferulate 5-hydroxylase.
COMT, caffeic acid O-methyltransferase.

SPAD. Poly(aliphatic) domain. Enzymes involved in SPAD monomer synthesis: KCS, S-ketoacyl-CoA synthase. FARI,
FAR4, FAR5, fatty acyl reductase(FAR). CYP86A1, CYP94, CYP86B1, cytochrome P450 monooxygenases(CYP
family). LACSs, long-chain acyl-CoA synthetase. GPATs, glycerol 3-phosphate acyltransferase. BAHD., BAHD
acyltransferase family.

Monomer transport involves enzymes: ABCGs, ATP-binding cassette. LL'TPs, lipid transfer protein.

Fig.1 Schematic diagram of suberin biosynthetic pathways
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Table 1 Transcription factors related to suberin biosynthesis in plants
B SRR 2T
R Type of L7 X AR 4 B A 2 EEPEN
Gene name transcription Species Impact on suberin Reference
factors
(15 MYB36 F . — 3 B A 0146 53 EHLBE THIR R ABA K P BT
BTk BRI B R AR A
SHR GRAS Arabidobsis thalian Located upstream of MYB36. interaction between SHR and MYB36 [32]
abidopsts thatiana can specifically increase the level of root ABA, thereby inducing su-
berization of root endodermis
UH ST IR B E H 1 (ESBD)
AtMYB36 MYB A. thaliana Positive regulation of suberin enhancing protein 1 (ESB1) [30]
AR IF B4 A FARS JA 8hF W0 Hkik _
AtMYB39 MYB A. thaliana Directly binds to the FAR5 promoter to activate its expression [32-33]
ACHE AL A5 2 ek DR AT T U % A A B 1 ) A A T R A
IR T B T AR 565G 25 BR
AtMYB41 MYB A thali Positive regulation of suberization transcription factors activates key [34-35]
- fhatiana steps in the biosynthesis of aliphatic suberin and the deposition of
suberin in cell walls
EE’%‘B&*V%@%HHHET%*H 05 7 W AR A B 32 i A ROR R
N VIR T
AtMYB107 MYB Mﬁéﬁ In the seed coat, transcription induces the biosynthesis and trans- [36]
AtMYB9 A. thaliana : : . .
port of aliphatic and aromatic monomers, as well as suberin poly-
merization
LR IF I U W A= ) J A8 A T R
AtMYB92 MYB A. thaliana Activation factor of the fatty acid biosynthesis pathway (37]
i e 5 MYBAL JREAA L. H 5 MYBA1 DIRETUAY - Rk A Jo A9 A= 40 45 Il
AZMYB&,? MYB ‘}U\mﬁ Similar to MYB41 in function, but redundant with MYB41, promo- [35]
ArtMYB93 A. thaliana . e .
ting suberin biosynthesis
SHR f1 50 {924 1) X HEL5 76 ABA (55596 5 1 A 23 o
MyEes BT A2 A (o IR B ) R K 0 4 5 7
I A key member of the SHR-mediated network, playing a pivotal role
AtMYB74 MYB . : . . . T . o [31]
A. thaliana in ABA signaling and endodermal differentiation, directly binding to
AtMYB84 . . A
the promoters of downstream f{unctional genes during suberization
process
7R k0 A G e DR R A A J5 A4 g R Ok IR 1 2 T ek
B AR B TR
AtMYB70 MYB . Negatively regulates the expression of peroxidase encoding genes [48]
A. thaliana S . . . :
and genes related to suberin biosynthesis, reducing suberin deposi-
tion
AchnABF2 5 AchnFHT J8 3l T MU EAR L 98 28 A 02 A= 999 45 35 PR A e I
AchnMYB4 MYB BB HLRFL R [38]
AchnMYB41 Actinidia chinensis Interacts with the AchnFHT promoter to regulate suberin biosyn-
AchnMYBI107 thesis genes and the accumulation of suberin monomers
e SRR A 5 R T R A 0 R T 7 S R AR DG B TR 1Y R A
ShMYB78 MYB Saccharum An activation factor for suberin biosynthesis and deposition, indu- [39]
ofcinarum cing the expression of suberin-related genes
. “F A AR BRI J5T 2 114 £ WA R
SiMYBI6 MYB Setaria italica Regulates the biosynthesis of suberin and lignin [56]
HAR 5 OR B H R R T AE W) R R AL 3R i
MdMYBG8 MYB Malus domestica Co-expressed with key suberin bl(ﬁynthesis genes [40]
W E AR I R S R IR G N T AR BRI A BRI A 200 i Y AR SR
MdMYB93 MYB M. domestic Heterologous expression in tobacco leaves and increases the accu- [41]
- domestica mulation of suberin and cutin precursor cells
. 5 R TR o8 IR AR JBT AR ) R TR ) 2 5K
MdMYB52 MYB M. domestica Regulates the expression of phenylpropanoid and suberin biosynthe- [42]
. : sis genes
S R PpyCYPS6BI WJH 81 F .
4 Ed T i y E
PpyMYBl44 MYB Pyrus pyrifolia Trans-activates the promoter of PpyCYP86BI [43]
Bz 1ﬁnﬁ§"kmvi§ﬂw D R A A I 2 0 5 I 3
StMYBI102 MYB D KR (447
StMYB74 Solanum tuberosum An 1mportant regulatory factor in the tuber wound division process,

controlling the graded transcriptional cascade of suberin biosynthesis
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FE A 44 Type of Yrwh R AR JB £ 5 1 EEPEN
Gene name transcription Species Impact on suberin Reference
factors
— A SRR G R N BAFARL Jii 8 1 B9 AT AR B8 M 4 Bd-
BdMYB92 MYB Brachypodium II:AR4 E/J%il-?ilih f the suberin synthesis Bd [45]
distachyon nteraction with the promoter of the suberin synthesis gene -
FAR4, directly regulates the expression of BdFAR4
ArtMYB6 MYB R IF 0 AR O L A 45 TR i 3R 3 r31]
AtMYBI122 A. thaliana Inhibits the expression of suberin positive regulatory factors
AtMYI?SS 1) [R50 o 5 R B 0T R R BT 28 1 A P o 3 A48 R O A I =X
) EZ LSREPIREE
QMYBI MYB Q. suber Homolog of AtMYB68, associated with cis-regulatory elements re- L46]
lated to the phenylpropanoid pathway of suberin and lignin
VeiMYB41 W 5 AtMYBAL [’ A2 #E T AR BT AR P45 A DT AR
VoiMYB41 -like MYB Vitis "Uimi_]z'era L Homolog()us't() AtMYB41, promotes the biosynthesis and deposi- [47]
tion of suberin.
B A 5 A U7 TR 145 R A A JB A ) AR R Yy 5k
ANAC046 NAC . Promotes the synthesis of fatty acids and the expression of suberin [49]
A. thaliana . .
biosynthesis genes
IR A fiEJE MYB9 . MYB107 Fl MYB93 %5 A #: it /9 1F I #3 IX F
ANACO58 NAC . May be a positive regulator of suberin, such as MYB9, MYB107, [50]
A. thaliana
and MYB93
MANACT1 CAC R W 5 5 AR A2 0 5 LI A £ 30 F .
MdINAC142 . M. domestica Activates the promoters of genes involved in suberization biosynthesis
MdNAC139 NAC g S 5 MdANACT74 il MANAC142 JE & 5 I — 4k r51]
MdNAC58 M. domestica Forms heterodimers with MANAC74 and MdANAC142
CeNACH NAC B PAEE KCS RS W 3 i 5 A AR i As A [52]
- : ) Corchorus capsularis 1.  Regulates KCS genes, affecting the production of cutin and suberin
fEHE OsNCED3 B3R5 . ITIi 84 7 ABA 114 5 ft Iia) H2 b 5w R #4252
NAC . IR F 1 AR K,
OsNACZ NAC Oryza sativa Promotes the expression of OsNCED3, thereby increasing ABA (53]
levels and indirectly affecting suberin production
RN 00T AR BT AR W B TR 0 1 e e R A IS R IS LA 1 5
StNACI03 NAC . Y Inhibits suberin biosynthesis genes, suppressing the synthesis of al- [54]
S. tuberosum
kane, fatty, and alcohol monomers
EpreT 5 5 S A R PR Mt JH CHC AAD A2 W0 3 TR 30 7 19 B 45
StWRKY1 WRKY S 17 ) Direct binding to the promoters of hydroxycinnamoyl acyltrans- [55]
. tuberosum ferase (HCAA) biosynthesis genes
B I A0 (3 % P450 FE CYP94B3 F1 CYP86BI B ik
AtWRKY9 WRKY . Regulates the expression of cytochrome P450 genes CYP94B3 and [17]
A. thaliana
CYP86B1
) JE 5 4 45 L [A] S
ArWRKY33 WRKY R T JE T 40 6 3 P450 B CYP86BI 3Rk [16]

A. thaliana

Regulates the expression of cytochrome P450 gene CYP86BI

3 A T P B I

A BT Y DL AR 52 22 20 58 A 1 9 4 A ) e ok
TR AR 5T A= W G RO G i A3 7 AR 85 8 A
3.1 FEiE

A [6) i 5P A A A A S ) 3 B AN TR . AR
e F R AMEY, AP WA K (Tetraena mon-
golica) M E (Zygophyllum xanthoxylum) B
WA TR BT T, 12 (Elymus sibiri-
cus )P A BT EL L T BEURGR BT LA B A R AR BT
R E RS TSR RS AR, AR LR
J 2% I A5 AR 1 A T 40 2 AR TR AL A A A A B 52

B iR BK 25 T 4l O 21 2R AR M e
R W RAEZ B0 T AR JZ G R I MR iR 12
15 A BH T3 R L R R A A 8 L R T AR R
5 1 P i LR 2 A T B AR ) B R SR A

ARG T 0 DL AR W 7K 3 R 2803 75 i
FERE P R R PR E AR . LRI esb] ORFE
Jo B 5 AR 1) 28 AR PR LB AR AR B O R K 43 R
AR R IR 1) 28 1 3 %6, 3 5 R M I U0 AR G n R AR
RSO AR TR A 1, cypSbal RAFK, cypSbal-
1.cyp86b1-1 MEEAFNK abeg2-1 abegb-1 ,abeg20-1
SRR R R AR K D, 5 BOR R K Y
BE YRR, KRB AE F A (Solanum
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Lycopersicum) " ARKE T FEAFAE T AN 2 i AS-
FT A1 MYB92 %5 SR K 46 05 T AR BTG 0, HEE
MR R BORAR BE BLT R R T A R
AR 5 7 R X R R A YL Ak AR
e T S UERRR BT, T 5 1 22 i BT A L IR R R
2 L G RE A B HCHRAR T 5 a R K R
G OB R N /8 =K A=Y A N - O N g D
il B A 0 M O A R DR R A A A R R s
Wi f W) FP B A K FARL (Myricaria laxiflora) E. 7B H
B JZ B J5E ) A 5T Ak 240 i BE A R B A JB )2 A
LAV B BT AMA B B 7T LS G b X 5 A
W AR AE IR BT BRI 5 22 b 5 A A AT B A
UL A 1 TR A R Ak 20 B BE X X T E AT T 53R
BTREERMETEXEE,
3.2 #EpE

JAE G TR %8 87 I 38 e 107 1) BIF AR X8 D
HWG 205 AR THEYPE L. 5T 20
SER I EN ST (VIR IS ER NGNS 7 & R W N g
DU EMR (Quercus robur ) TE Bl R, AR
AW RO G B B TR B A RS L R R
W AR KON 8 MR A AR B2 AT 2 R i
FMAMBTOU . T A AR P R i < 2 41
R P R WA (ROL) 7 B o L A0 A B0 5 9 DA 25 56
HR I AR % R A RE S R A A KA A
B SR AR B N 2 AR IR A
HEAHAR BT L A .30 d BB e T R
I #: 8% (Rhododendron delavayi) 7P ke 4= ¥ 0k
Jig Wi B AR L B 5 R A W 5 B i U7 R A A L B £
JBt AR R A A A R AR

5 38 2 BT o K BRI T SR O
YA E A S BRI T MY iR, MR
Jot 2R A R S5 7 A1 3 K 4 BE PN B TTC AR B ROL
(g BFREEY . ROL Bf R aof i ik 4 i) AR 43 A 41 219
s e IR B2 M i /b 4801w S B BB R IR T
P 1 AR AR LR B AT S50 S BN e — B E
BEE N R A AR R ROL B B 43 i it
AR A Ao 7 52 o AR B 1 9 b 4 1 O 3l 1 L BEL Ik
KRR BB BRI — S A Y A
HEFRIE 1A i 114 S5 A Bt B AT A A &30 9 /0 3 <
LA 1) R O I B LA R A S W AR,
3.3 #imE

ER A 0T 1 A A A S S e AR T
b B 1 ABA {5 5 30 A R 2 AR
BRI R KRR BT A YA U 1 mRNA 7KF

B, B A R R R SR L AR T R K R S Rl
‘Pokkali” i, Er il =B 15k T N 2P aEK N
C16,18, 24,26 F1 28 A A W7 W AR # BT 54K 19 &
B AN 35 R At R R e R B, 7E K
A v, B A R R R S, AR AR Ak i R R A S R A
C18 : 1 XWRMR .C18 I C24 w-F2FEMRAEEL Wil F hk
frs K SRR B B B (Olea europaea) 15 £
38 5 N JE AR AT SR AR O, I I 2% TR SR Y
AR AR AR L N R R AR TR R R vk
KOG g Of B REE Eaa R g 2 s ARk,
b vl e v L L ECA RO 2 R B b, — O IR
SEIT AR AT AL T B 5 I3 — J7 1 AE AR o B i Jo A A
S5 B v ER S L B kb TR 8 i 2 Y i K
BRpE

EN ) SERL S A N IR S L E I 7 B
TH S v R L AL RS W SOPHHT1 (9 4 i 5L [H B 5 K
MR & A 3 N ASFT .ESBI Ml FHT #
B L, A, 2 5IENR G M P450 5 B
51 CYP86A1 .CYP94A1 .CYP194A2 .CYP94A5 Fl
CYP94BI WAeEh it F i G 2k, ik
B RIE B DAISY /KCS2 Fiis 45 N 15 s B 44 11y
FARI .FAR4 Fl FAR5 % 3 [K #0455 Ai1is 8 W aa
TR RET L KRR A R R ST At
MYB41 0 J3 3 F7E ABA Il NaCl 20 155 T #k
PSS AL G MYB41 76 N B 2 A4 I8 42 R B BT T FR Y
MYB $6 5k FrERFE KR R Gk B L
IO £h Bl T

A BT U0 FRAE AR AR 3R O bR R BRI K 43
FVE™ FR 8 37 (38 5 . b7 1k Na ™ Fl CL 2% 2% 21 K RS
W T H 4 — 5 R R BE 1T X — ML O 7E KRS
R A6 AN T oK 55 i 4 4 4 Je — 6 3k A M 4 v A5 2R
STl A G0 A 4R L T ER R K RS L £h A
JERA KR I A AR B R, A s > T Na ' (1
S Gl I TR AMAE AR A B Na' ) . i 4 5 T 77
TR KR R R M IR T AU £ 0 L R OR B AT
TG B R AMA S K P . 5B AN B AE RS (Oryza co-
arctata) A M58 B BT AP A B B, {H JH AR 2595 [A) 20 21
F A R A0 AR B 2 i 2 6 vk B2 384 i s 2L . LRE IF AR
T 5 A R B 2 AR AR ey p86al BYBIEFE 6 7n o HR P 2
JEAHE R RE BR i Na® 38 i #5410 M 34 42 1 E A
AR LA YEAE L2, 8] B2 7K 4 0 K () 4 4 1]
TR T TR R ESY L i R CSKCS6 3
PR 1) 0 T S A R 0 T 26 B K 0 AR RN B S Y A
RN R Y OB A B T AN HE R R G
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SR B T R VR R R AR Bl
(Sorghum bicolor) Wit £ Pk & 2% [ M X3 19 4b
HEGE J1 . 1k SbCAPS4 Y0l /e T 44 5 AR 5 S A ¢
B, AR R Na ™ A BEARZE Na' Wk 382> ROS
FR 7 A T SR R T B TR LR O 6T R T 3 A T AZ
PR R A R R R K A B A AR ) I — s K
0 3 AR R A D L A HE B o ek R A3, FEAR T
JERHLICHE AR M Bt g UE A 2 5 T R 2
3.4 REEB

FRBE IR L A 5 ) A A K AR BT A DR, ¥ 3B R
a0 A5 2 B IR BRI 2 5 R A0 i B 4
JE L R R N T IE N SR B IR L AR AR R SR
TET P19 200 R 18 T2, S (SR 2 17 i I ) 45 B, SR 386 T 1
AR A WORT L T a0 E E AS [R) 4 2T 4N i R
Gl 0D S e 2K O A i T 30T R B S0 1Y
JEL B o JF B AR AR W) G SR R Rk L B R R b
PSS WKW S 5 Y I RO R, DA AR
JREOA BT I T A RE . SERVR Tl A2 8 R
J5 ST PAL [ A SO T AR 3 I 2 S 7 A
H = 42 (Picea glauca) B9 MR L2 76 AR IR T 03 4
fEH . BRAh A T 5T e PR, G R A R R Bl /0
SRS B AR R ORI 5 1 32 # R E Y L B b
i T R0 PEG . HUB AR 1 40 K e B T —
R TR AR R A JO B A £ B G B BAFAR4 K2 A
1 22 3k KR

AR T B OB X 42 FHE AR IR T B4 ) &=
T, RRNS L FE B N 412U K AR . R R R
AL ECHE T B A B B 38 T LA %80 ik /0 240 i 4/ o2 &%
1717 25| A P 28 HIC o B AR SR /K R A 40 405 382 v A 0 1 e
P,
3.5 Eg&REMiE

16 4 R A0 R ] DL 3 R M TR ) 4
. AR T 30 R N PR /N 22 AR R DY B2 A Y 4y
s 2000340 A 00 3 B B 25 TR B 5 AR B A
A AR BN TaPAL . TaGPAT3 ., TaLRR
TaABCG50 #&H: T FiR“Y , T IF (Thellung-
iella salsuginea) ", A [ ¥ BE 19 R S UK A2 i & B
ANFAEAE,50 pmol/L Wit N ARG & A 7t
1 100 pmol/L W3l T I oA K6 I 21 A # B 7 i B
AR AL AR 2 AR B AR HE TR R AR 1 A G Ik A Y
Tk K (Co SRR I 1B F 15 F7, 00 )
Ko B R AR B AR T RNAE T 3R B AE PR R R
WEER TRV T T R A TR L cyb86b1-1 casfit-1 55
AR AR DR ol Bz e A e S ik A K ko 4 R AR

[F) A S B8 (St 1| 7S 3 3 AR AR ot XA A Bt A O 26 R
(0 2 2k 3R WK B 5 A 45 B T D) ERA S
LI A AN (Bruguiera gymnorrhiza ) F£1 % 2%
(Rhizophora stylosa) 7 i 3% 4 J& 5y (Pb) . #¥ (Zn)
FVER CCu) B JBip 380 B5] -, 3 B A8 A A4 JB 1 0 AR G i,
W A TR 0B 0o 4 e 1 9 A s T

RZH0E 48 B 1 O WU # 2 i 6 i A ik
A8 o) v AT A A 1] 3 i TR P )2 R B Y TIC AR
AT LU B3k AR FH L A R4 BE 1 48 4 B AR 2R X gk
LRy R 0 S e L IEAR L7/ DO B ]
WA A 2 RR 8 TR R R AT, 2 A
CLAN AR W) i S RN Z108 =2 A Bl L T AR
J2 2R BT AR o e, 3 R A v B B A R T A2 M
TEHAI AT AR R 2 M bR 22
I £ 4 e 3 U0 Xt A5 AR L b B W 3l B
B, 210 25 T HAT B R R K B AR AR kAL L fiE
A RO I 3 AR R
3.6 EFME

W % 5% 53 09 W W B A R S 1 AN TR Y B R A%
R 22X AR A B 2 R0 Ah B T2 1 AR A8 A 7 A R TR Y 52
Wa . EA R I R PN B AR AR A A SR 0 R G AR b 3
TSR T G K L B A L DB R A Bl R EARE
KFEAR RAE S NH, FREE T AL FUA 5 fb 3 5
3 5 2y R AFH I 1 5 L AR T R B B YL Gk
PR T KA R R AR IR MR T H
I BRI L R O E SR AR HE T 3 i
Yy Rh Bk 5% Z 2L (Carex vesicaria) . JK ¥k B ¥ (Carex
rostrata) F1 A M 22 ¥ (Carex gracilis) ) 4 2 2 53
ARE) B RR (Ricinus communis) FIILEG IR EBL = F2
G310 - M HLER 2 80 R R B AR W A . (R B =
NO; MY B RRARAER T A R AR AL, IRz
BN IR A o1~ MR A AR 9 9 B R 3 Ak S BB
M5 5 1] AR A AR BRI AR 2R KR T AR
WK B LA AR 5 2E i R B KRR
(/ST RN RV SN = N o e I (ER Y S ED SR O
Fok AR 25K & B IE A OKETT L RA R
b SR K H AP R oA 1 S TR A 3L AR R
AR IR AR AL HE IR 2 WA Wl VB Y Bl = X 1 e
R = R A s N TR ORI R () E R T By
DUBR S AL S AR I A ) 5 WUHE IR CYPS6ASS 1Y
Fik BRI T 61 %, HE Mg 5 IR ik
JE S BUIE , KRR AL SR B R A A KUY

AHE BRI 5T SR i I3 BE A 00 18 5 R )
VRPN B8 78 % P, AN LA 1) e iz 2 1 B Lk IR IR
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JB AT F Y A RE R T AR K AR g Y, K
I B R 5 AR R BT rh K Z B3 T R Ak, &
A i A A e Al 2 Kk =2 B85 B 1 B 0L AT BT
T TERR ) 25 0 F 4 38 K B ZS™ . mg s iy A dd 1k
OS2 458 35— b 57 1k TR A ) S 2 T TR ) SR G, SR A )
B2 PR G T AL IR Sy i L AR R
i F 3 0 RE A5 1 SR AR 0 R 20 R B R IR ORI s
i 3 — o R A 2 A MR S AR S RS T By 3 T i
BT EEER,

4 B OB

20 A J5E 4% 5 1 R 4 R 0 B AR A ) A
T e v B4 A 2 O 2 XY 1
BFAEAEREE S, RO R BT, AR A
PERUI AR #5224, U84 I 485 1 1 5% DL R T 22 ) Y
FE AT i A W1 o BIF 5 R O 45 B A B O A R A S
BN . AR P9 R R B A= ) &5 2 2
P s I T MRS I R 4%, 2 S5EM R EREE
Fe3ama i, SCrp 8 3 1 MYBLNAC e PR &% H
Je AR 2 B s DR G0 R B — R 03, e T R PR B
TR HLIER 73 Dy HE A 55 0 285 7 AT S 4 b A
AP AU I . SR AN [F] 9 b [8] A A S 19 24 23 Al
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