Abstract:【Objective】 With the change of regional cultivation environment, the problem of rooting difficulty of cuttings is gradually highlighted. Exploring the effects of suitable concentration of indole butyric acid (IBA) on rooting and sprouting, antioxidant property and gene expression related to growth hormone biosynthesis pathway of fig(Ficus carica) cuttings may provide theoretical basis for its application in fig breeding, propagation, promotion and planting. 【Methods】 The hard branches of ''Brown Turkey'' fig variety were used as cuttings to analyze the effects of different mass concentrations of IBA (0, 30, 45, 60, 90 mg/L) treatments on the rooting traits and antioxidant properties of the scions, as well as transcriptome analyses of axillary buds in the middle part of fig cuttings from 45 mg/L IBA treatments and the control group. 【Results】(1) The germination and rooting rates of fig spikes reached the maximum at 45 mg/L IBA treatment and differed significantly from other treatments and control.(2) With the increase of IBA concentration, the SOD and CAT activities of spike showed the trend of decreasing and then increasing, and both were significantly lower than the control in 45 and 60 mg/L IBA treatment, while POD activity was not significantly different between the treatment and the control; the content of MDA and H2O2 in the spikes of each concentration of IBA treatment was significantly higher than that of the control, and the MDA content in the spikes of 45 mg/L IBA treatment was significantly lower than the rest of the treatments. (3) The results of transcriptome analysis showed that there were 6 879 differentially expressed genes in 45 mg/L IBA treatment and control, and KEGG enrichment showed that there were 10 differential pathways, and GO enrichment analysis indicated that the biological processes and molecular functions were the main biological pathways; the genes related to CAT and SOD were enriched in peroxisomal pathway, while the genes related to POD were enriched in phenylpropane biosynthetic pathway. The metabolism-related gene FcGH3 was significantly up-regulated in the IAA biosynthesis pathway, and the genes related to signaling, such as FcAUX1, FcARG7 and FcARF, were significantly down-regulated. 【Conclusion】 Exogenous IBA treatment led to differential changes in the expression of relevant genes in the antioxidant enzymes and IAA biosynthesis pathway of the fig spikes, enhanced the spikes'' resistance to stress, and promoted the spikes'' rooting, sprouting and seedling formation. Exogenous 45 mg/L IBA treatment had the best effect.