外源IBA对无花果扦插苗生理特性及内源IAA生物合成途径的影响
作者:
作者单位:

1.云南农业大学 园林园艺学院;2.新疆农业科学院 吐鲁番农业科学研究所

基金项目:

云南省基础研究专项-青年项目(202101AU070094),云南省基础研究专项-面上项目(202301AT07049)。


Effects of exogenous IBA on physiological characteristics and endogenous IAA biosynthesis pathway of Fig cuttings
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】随着区域栽培环境的变化,扦插苗生根难问题逐渐凸显。探讨适宜浓度吲哚丁酸(IBA)对无花果插穗生根萌芽、抗氧化性及生长素生物合成途径相关基因表达的影响,可为其应用于无花果的育种、繁殖、推广和种植提供理论依据。【方法】以‘波姬红’无花果品种硬枝为插穗,分析不同质量浓度IBA(0,30,45,60,90 mg/L)处理对插穗生根性状、抗氧化特性的影响,并对45 mg/L IBA处理及对照组的扦插枝条中段的腋芽进行转录组分析。【结果】(1)无花果插穗萌芽率和生根率在45 mg/L IBA处理时达到最大值,并与其他处理和对照差异显著。(2)随着IBA浓度的增加,插穗SOD和CAT活性先下降后上升,并均在45,60 mg/LIBA处理下显著低于对照,而POD活性无显著变化;各浓度IBA处理插穗中MDA和H2O2含量均显著高于对照,且45 mg/L IBA处理MDA显著低于其余处理。(3)45 mg/L IBA处理及对照组中共存在6 879个差异表达基因,KEGG富集显示有10个差异途径,GO富集分析表明生物学过程和分子功能为主要的生物学途径;与CAT、SOD相关的基因集中富集在过氧化物酶体通路上,POD相关基因则富集在苯丙烷生物合成通路中;IAA生物合成途径中代谢相关基因FcGH3显著上调表达,与信号转导相关基因FcAUX1、FcARG7和FcARF等显著下调表达。【结论】外源IBA处理会导致无花果插穗抗氧化酶和IAA生物合成途径中相关基因表达的差异变化,增强插穗抗逆性,促进插穗生根、萌芽、成苗,并以外源45 mg/L IBA促进效果最好。

    Abstract:

    【Objective】 With the change of regional cultivation environment, the problem of rooting difficulty of cuttings is gradually highlighted. Exploring the effects of suitable concentration of indole butyric acid (IBA) on rooting and sprouting, antioxidant property and gene expression related to growth hormone biosynthesis pathway of fig(Ficus carica) cuttings may provide theoretical basis for its application in fig breeding, propagation, promotion and planting. 【Methods】 The hard branches of ''Brown Turkey'' fig variety were used as cuttings to analyze the effects of different mass concentrations of IBA (0, 30, 45, 60, 90 mg/L) treatments on the rooting traits and antioxidant properties of the scions, as well as transcriptome analyses of axillary buds in the middle part of fig cuttings from 45 mg/L IBA treatments and the control group. 【Results】(1) The germination and rooting rates of fig spikes reached the maximum at 45 mg/L IBA treatment and differed significantly from other treatments and control.(2) With the increase of IBA concentration, the SOD and CAT activities of spike showed the trend of decreasing and then increasing, and both were significantly lower than the control in 45 and 60 mg/L IBA treatment, while POD activity was not significantly different between the treatment and the control; the content of MDA and H2O2 in the spikes of each concentration of IBA treatment was significantly higher than that of the control, and the MDA content in the spikes of 45 mg/L IBA treatment was significantly lower than the rest of the treatments. (3) The results of transcriptome analysis showed that there were 6 879 differentially expressed genes in 45 mg/L IBA treatment and control, and KEGG enrichment showed that there were 10 differential pathways, and GO enrichment analysis indicated that the biological processes and molecular functions were the main biological pathways; the genes related to CAT and SOD were enriched in peroxisomal pathway, while the genes related to POD were enriched in phenylpropane biosynthetic pathway. The metabolism-related gene FcGH3 was significantly up-regulated in the IAA biosynthesis pathway, and the genes related to signaling, such as FcAUX1, FcARG7 and FcARF, were significantly down-regulated. 【Conclusion】 Exogenous IBA treatment led to differential changes in the expression of relevant genes in the antioxidant enzymes and IAA biosynthesis pathway of the fig spikes, enhanced the spikes'' resistance to stress, and promoted the spikes'' rooting, sprouting and seedling formation. Exogenous 45 mg/L IBA treatment had the best effect.

    参考文献
    [1] FLAISHMAN M A, Rodov V, Stover. The fig: botany, horticulture, and breeding, Hortic[J]. Rev, 2008, 34:113-196.
    [2] 王同勇, 杨鹤, 薛玉平,等. 7个无花果品种在威海的引种表现及栽培技术[J]. 中国南方果树, 2016, 45(2):161-163.WANG T Y, YANG H, XUE Y P, et al. Introduction and cultivation techniques of 7 FIG varieties in Weihai[J]. South China Fruits, 2016, 45(2):161-163.
    [3] JEONG W S, LACHANCE P A. Phytosterols and Fatty Acids in Fig (Ficus carica, var. Mission) Fruit and Tree Components[J]. Journal of Food Science, 2001, 66(2):278-281.
    [4] SOLOMON A, GOLUBOWICZ S, YABLOWICZ Z, et al. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.)[J]. Journal of Agricultural Food Chemistry, 2006, 54(20):7717-23.
    [5] CARO A D, PIGA A. Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.)[J]. European Food Research and Technology, 2008, 226:715-719.
    [6] 程亮.无花果栽培及采后技术研究进展[J].中国果菜,2022,42(11):78-84.1008-1038.CHENG L. Research Progress of Fig Cultivation and Postharvest Technology[J]. China Fruits, 2022, 42(11):78-84.1008-1038.
    [7] 巴哈依丁·吾甫尔, 孟宪儒, 艾尔肯·艾尼,等. 60Co-γ辐射诱变对无花果插条萌芽的影响[J]. 中国农业大学学报, 2019, 24(10): 39-46.WUFUER B, NENG X R, AINI A, et al. Effect of 60 Co-γ radiation mutagenesis on the bud breaking of Fig (Ficus carica L.) cuttings[J]. Journal of China Agricultural University, 2019, 24(10): 39-46.
    [8] NAG S, SAHA K, CHOUDHURI M A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting[J]. Journal of Plant Growth Regulation, 2001, 20(2): 182-194.
    [9] 马娜, 齐琳, 高晶晶,等. 5-ALA对高温下无花果扦插幼苗的生长及叶片叶绿素荧光特性的影响[J]. 南京农业大学学报, 2015, 38(4):8.MA N, QI L, GAO J J, et al. Effects of 5-aminolevulinic acid on cutting growth under high temperature condition and leaf chlorophyll fast fluorescence characteristics of Ficus carica L[J]. Journal of Nanjing Agricultural University, 2015, 38(4):8.
    [10] 王艺, 贾忠奎, 马履一,等.4种植物生长调节剂对红花玉兰嫩枝扦插生根的影响[J].林业科学, 2019, 55(07):35-45.WANG Y, JIA Z K, MA L Y, et al. Effects of Four Plant Growth Regulators on Rooting of the Softwood Cutting of Magnolia wufengensis[J]. Scientia Silvae Sinicae, 2019, 55(07):35-45.
    [11] 徐国锦, 蒲浩杰, 张鑫,等.不同品种无花果的扦插育苗试验初报[J].南方农业, 2019, 13(14):34-35.XU G J, PU H J, ZHANG X, et al. Preliminary report on the experiment of cuttage rearing of different varieties of FIG[J]. South China Agriculture, 2019, 13(14):34-35
    [12] 胡耀芳, 范希峰, 滕珂,等. IBA对‘密花’芒茎秆扦插幼苗根系的影响[J]. 草原与草坪, 2021, 41(03):99-102+107.HU Y F, FAN X F, TENG K, et al. Effect of IBA on root growth of seedlings progagated from stem cuttings in Chinese Sillvergrass (Miscanthus sinensis cv.Mihua)[J]. Grassland and Turf, 2021, 41(03):99-102+107.
    [13] 刘昊, 宋晓波, 周乃富,等.吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响[J].浙江 农林大学学报, 2017, 34(06):1038-1043.LIU H, SONG X B, ZHOU N F, et al. Adventitious root formation with IBA and endogenous hormones dynamics in walnut soft-cuttings[J]. Journal of Zhejiang A F University, 2017, 34(06):1038-1043
    [14] 于江珊, 张苗苗, 施江,等. 植物激素对类黄酮代谢调控机制研究进展[J]. 中国中药杂志, 2021, 46(15):8.YU J S, ZHANG M M, SHI J, et al. Research progress on mechanism of phytohormones in regulating flavonoid metabolism[J]. China Journal of Chinese Materia Medica, 2021, 46(15):8.
    [15] 孔祥生, 易现峰. 植物生理学实验技术[M].北京:中国农业出版社,2008:252-253.
    [16] 王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2006:167-173,302-203,278-283.
    [17] 尚春琼. 桑树硬枝扦插不同生根类型的生理与转录调控机制比较研究[D].江苏:江苏科技大学, 2021.
    [18] CAO L, XU X, CHEN S, et al. Cloning and expression analysis of Ficus carica anthocyanidin synthase 1, gene[J]. Scientia Horticulturae, 2016, 11:369-375.
    [19] CHAI L, WANG Z, CHAI P, et al. Transcriptome analysis of San Pedro-type fig (Ficus carica L.) parthenocarpic breba and non-parthenocarpic main crop reveals divergent phytohormone-related gene expression. Tree Genet Genomes, 2017, 13:83.
    [20] 何崇单, 姚锐, 黄瑞春,等. 外源K-IBA对北美香柏扦插生根和内源激素含量变化的影响[J]. 中南林业科技大学学报, 2017, 37(10):7-12.HE C D, YAO R, HUANG R C, et al. Effects of K-IBA treatments on adventitious rooting and endogenous hormones contents of shoot cuttings of Thuja occidentals L[J]. Journal of Central South University of Forestry Technology, 2017, 37(10):7-12.
    [21] 吾尔古丽·托合图木. ‘波姬红’无花果扦插繁殖技术体系研究[D].新疆: 塔里木大学, 2022.
    [22] 杨浩. 破布木扦插繁殖技术及生根机理研究[D].广东:广东海洋大学, 2020.
    [23] 于晓跃,路斌,史宝胜.外源生长物质对紫叶李扦插生根的影响[J].林业与生态科学, 2019, 34(03):314-320.YU X Y, LU B, SHI B S. Effect of exogenous growth material on rooting and growth of Prunus ceraifera f. atro purpurea cutting[J].Forestry and Ecological Sciences, 2019, 34(03):314-320.
    [24] 罗羽洧, 解卫华, 马凯. 无花果花芽分化与内源激素含量的关系[J]. 西北植物学报, 2007, 27(7):1399-1404.LUO Y W, XIE W H, MA K. Correlationbetween Endogenous Hormones Contents and FlowerBud DifferentiationStage of Ficuscarica L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(007):1399-1404.
    [25] WINK M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores[J]. Theoretical and Applied Genetics, 1988, 75(2): 225-233
    [26] SINGH R, RASTOGI S, DWIVEDI U N. Phenylpropanoid metabolism in ripening fruits[J]. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(4): 398-416
    [27] RICHARD A D, CHRIS J L, Sameer M, et al. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses-a review. Gene, 1996, 179(1): 61-71
    [28] 胡国宇, 王丹, 张猛, 等.IBA对费约果扦插生根及相关生理特性的影响[J]. 中南林业科技大学学报, 2021, 41(10):45-56.HU G Y, WANG D, ZHANG M, et al. Effects of IBA on rooting and physiological characteristics of Feijoa sellowiana cuttings[J]. Journal of Central South University of Forestry Technology, 2021,41(10):45-56.作者贡献:陈紫玉:主要实验完成人及论文撰写巴哈依丁·吾甫尔:生理生化指标测定任桂霖:数据整理魏靖:参与部分实验王梓然:实验指导及文章写作指导
    引证文献
引用本文

陈紫玉,巴哈依丁·吾甫尔,任桂霖,等.外源IBA对无花果扦插苗生理特性及内源IAA生物合成途径的影响[J].西北植物学报,2024,44(7):1046-1054

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2024-03-08
  • 录用日期:2024-03-11
  • 在线发布日期: 2024-05-31
  • 出版日期: 2024-07-01
文章二维码