祁连山国家公园青海片区森林大样地生物多样性特征
CSTR:
作者:
作者单位:

1.青海省环境工程技术评估中心 西宁;2.青海省饲草料技术推广站 西宁;3.祁连山国家公园青海服务保障中心;4.中国科学院西北高原生物研究所 西宁

作者简介:

通讯作者:

中图分类号:

基金项目:

祁连山国家公园青海片区森林生态系统监测大样地建设项目


Biodiversity characteristics of typical forest large samples in the Qinghai area of Qilian Mountain National Park
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】通过监测森林大样地植物群落特征的长期动态变化,揭示物种多样性空间格局及维持机制,为该区域的生物多样性保护提供科学依据。【方法】以祁连山区青海云杉林生态系统为研究对象,采用相邻格子法进行大样地乔木植株每木调查,并解析其生物多样性调控因素。【结果】青海云杉林生态系统的乔木总数为35 835株,青海云杉和祁连圆柏分别占据57.84%和23.82%。物种丰富度和平均株高分别为3种和10.7 m。Shannon-Wiener指数和Simpson指数分别为0.74和0.43,Shannon-Wiener指数偏低,但Simpson指数较高,存在物种数量集中度较高现象。森林大样地Shannon-Wiener受乔木高度、物种丰富度和Simpson指数的极显著影响。机器学习模型训练集和测试集的决定系数分别为0.95和0.93,均方根误差为0.06和0.08,表明模型对Shannon-Wiener指数的解释能力和预测精度均较高。【结论】通过增加物种丰富度和优化树种结构可以有效提升该区域的生物多样性。

    Abstract:

    [Objective] By monitoring the long-term dynamic changes in the characteristics of plant communities in large forest plots, the spatial patterns and maintenance mechanisms of species diversity are revealed, providing a scientific basis for biodiversity conservation in the region. [Methods] This study takes the typical forest ecosystem as the research object in the Qinghai area of Qilian Mountain National Park. Furthermore, we used the adjacent grid method to conduct a survey of each tree in a 24 hm2 large sample plot. [Results] There was a total of 35 835 trees, of which Picea crassifolia and Juniperus przewalskii accounted for 57.84% and 23.82%, respectively. Species richness and plant height are 3 species and 10.7 m, respectively. Shannon-Wiener and Simpson index of spruce forest are 0.74 and 0.43, respectively, Shannon-Wiener index was relatively low. The Shannon-Wiener index is significantly influenced by tree height, species richness, and Simpson index. As the tree height increases, the Shannon-Wiener decreases, while the species richness and Simpson index increase significantly. The coefficients of determination for the training and testing sets of the machine learning model were 0.95 and 0.93, respectively, with root mean square errors of only 0.06 and 0.08. This indicates that the model has a high explanatory power and prediction accuracy for the Shannon-Wiener data. [Conclusion] In conclusion, increasing species richness and optimizing tree species structure could effectively enhance the biodiversity of the area.

    参考文献
    相似文献
    引证文献
引用本文

王定晖,索南才让,于红妍,等.祁连山国家公园青海片区森林大样地生物多样性特征[J].西北植物学报,2024,44(12):1973-1979

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-10
  • 最后修改日期:2024-07-12
  • 录用日期:2024-09-06
  • 在线发布日期: 2024-10-25
  • 出版日期:
文章二维码