Abstract:In this study, a flavonoid glycosyltransferase gene in the anthocyanin synthesis pathway was isolated from petals of Muscari ameniacum and designated as MaGT1(GenBank accession was MK652470). The fulllength of ORF was 1 338 bp ,encoding 445 amino acids . The molecular weight of the predicted enzyme was 49.301 kD and the pI value was 5.40. The results of structural analysis revealed that the deduced MaGT1 protein contains a typical conserved PSPG motif, an UDPglycosyltransferase family domain and an UDPglucuronosyltransferase/glucosyltransferase domain (UDPGT). The results of evolutionary analysis showed that MaGT1 protein is closely related to Elaeis guineensis, Phoenix dactylifera and Vitis vinifera and belongs to the flavonoid glycoside glycosyltransferase branch, with UDPglucose/rhamnose as the main sugar donor. Anthocyanin content assay showed that anthocyanins only accumulate in the flowers of M. ameniacum, but almost no anthocyanins were accumulated in roots, bulbs and leaves, and uncolored flower buds (S1), and with the flower development process, the content of anthocyanins increased continuously and reached the highest in the decay period (S5). The results of realtime PCR showed that the expression of MaGT1 gene has significant spacetime specificity. It is predominantly expressed in flower tissues and is rarely expressed in roots, bulbs and leaves. At different flower development stages, the expression level of MaGT1 gene increased with flower development and peaked at the fully opened petal stage. The results showed that the catalytic reaction of MaGT1 protein is an important modification step in the anthocyanin synthesis pathway. This study provides a basis for further study of the function of MaGT1 gene in the synthesis and regulation of anthocyanins in M. ameniacum.